電磁気学

岡部 洋一 東京大学/放送大学名誉教授

> 2024年6月28日 起草:1997年

まえがき

本稿は,自分が電磁気学を修得する際,分かりにくかった部分を,いかに他人に教育するか を意識してまとめたものである。近年,初学の人を対象にした本は,数式をなるべく記載しな い傾向にあるが,本書は,ある程度,電磁気学を習得した人を対象としたため,数式はふんだ んに現れる。

しかし,数式の持つ意味,特に面積分などの概念については,私自身が,初めて習ったとき に,なかなかその意味が理解できなかったため,それらの導入にあたっては,特に丁寧に説明 しており,その意味では,初学の人にも十分理解できると信じている。電磁気学をしっかり勉 強したい人には適した書籍と考えている。

また,電磁気学は学生時代の研究対象であり,また教職に就いてからも,いくつか電磁気学 の講義を持っていたこともあり,40年以上にわたって,怪しいところは徹底して理解に努め た結果を記載したものであり,同様な疑問を持たれるであろう人に対する解答は可能な限り記 載したつもりである。それでも,解消しなかった疑問については,明示した。

本書は、大きく、次のような特徴を持つ。

- 1. 従来,線積分で表現されていた「回転」の概念を,「発散」と同様に面積分を基礎とす るものに改めた。
- 2. 電流の作成する磁場は,従来,実証の難しいビオ・サバールの法則により表していたが, それを実証の楽なソレノイドの生成する磁場を基礎にすることとした。
- 3. 従来,比較的無視されがちであったベクトルポテンシャルの重要性を感じ,それにかな り重点を置くようにした。

このうち、最後の点については特記したい。

ある程度,電磁気学を習得した人間でもベクトルポテンシャルの意味や重要性はなかなか分 かっていないことが多い。スカラーポテンシャルは電場という三次元的ベクトルを一次元的ス カラー量で代表できることから,それなりの意味を持っていることが理解できるし,回路理論 での重要な量である電圧そのものであるから,日頃から馴れ親しんでいる量である。一方,ベ クトルポテンシャルは,三次元ベクトルである磁場を三次元的ベクトルから導出できるだけで うまみがないし,ベクトルであるから表示も難しく,電磁気学でもあまり顔を現さないため, 不慣れな量である。

しかし、ベクトルポテンシャルはかなり重要な量である。これは電場や磁場以上に実在する 場なのである。電気磁気学の基本法則にファラデーの電磁誘導の法則があるが、これは時間変 化する磁場中にループ状の導体を置くとその両端に電圧が生じるというものである。この磁場 変化と誘起電圧の関係は鉄心があっても変わらない。しかし、鉄心があると、磁束の大部分は その中を通過してしまい、肝心のコイルのあるあたりでは磁場はほとんど0のはずである。そ れではコイルは何を感じて電圧を発生するのであろうか。答えは、鉄心の外部には、磁場はな くても鉄心を取り囲むようなベクトルポテンシャルがあり、コイルはそれを感じるのである。

古典電磁気学ではこれを次のように解釈する。磁場は変化しているので電場が誘起され,こ れを計算してみると,磁場のほとんどないコイルの部分にも電場が存在し,この積分がちょう ど誘起電圧に等しくなるというものである。したがって一定磁場の場合は電場も誘起されず, 鉄心のまわりには本当に何もなくなってしまう。しかし,超伝導体の出現により一定磁場の場 合にも鉄心のまわりには何かがあると考えないとおかしいということが判明した。超伝導体に 限らず,量子力学的サイズの粒子のミクロな運動も鉄心のまわりの何かを感じるのである。そ れがベクトルポテンシャルである。

このようにベクトルポテンシャルは実在する場であるという意味で明らかに重要な量である が,他にもいろいろ便利な量である。磁場分布を電流分布から計算する場合,あるいは時間と ともに変化する動的な電磁場の解析になくてはならない量である。さらにスカラーポテンシャ ルと組になって相対論を構成する重要な量である。こうした点から本書では,ベクトルポテン シャルをスカラーポテンシャルと対等に取り扱った電磁気学を論ずるつもりである。対等であ るということは他の本に比べかなりベクトルポテンシャルに偏った印象を与えるかも知れない が,上述のように意義のある量であるので,頑張って理解していただきたい。

「まえがき」の最後の最後に述べたい事がある。電磁気学を数式なし,あるいは面積分や div や rot の概念なしに習得できないかと言う事である。私自身,当初は学生としてこれらの概念 の習得に非常に苦労した。またその後,教育者としてより簡単な教え方はないかと努力した。 しかし,概念だけならば数式なくして教えていく事は可能であるが,身には付かない。電磁気 学の論理を納得して理解しようとすれば,どうしてもこれらの厄介な式を理解せざるを得ない のである。この結論の結果,それならば面積分などの厄介な概念を正しく簡単に教える方法は ないかということで辿りついた記述が随所に見られるので,楽しんで読んでほしい。

「電磁気学の理解には数式の理解は不可欠である。」

Version up 歴 1997年: アンペールの法則を線積分でなく rot と自然に結び付いている面積分により定義 1998年11月21日: TeX 化 1999 年 3 月 14 日: ビオ・サバールの法則からではなく,実験が容易なソレノイドの磁界から定義 2001 年 9 月 17 日: TeX + perl 化,および章分割 2001年12月22日: Web 化 2002年1月17日: Web 公開 2008年11月21日: 「電磁気学の意味と考え方」講談社として出版 2021年6月4日: 付録の「単位系について」を大幅に書換え 付録の「単位系について」に「再び対称系について(γ 不要論)」を追加 2022年4月17日: 2024 年 4 月 27 日: 静磁場の性質でソレノイドの磁場からの導出法をわかりやすく書換え

All Rights Reserved (c) Yoichi OKABE 1997-present.

個人の使用以外のコピーを禁じます。また,再コピーおよび再配布は禁止します。ただし, 教育目的に限り,再コピー,再配布は原著者を明示するという条件でのみ許諾します。

リンク先 (クリックできます)

- 電磁気学 (HTML 版)
- 電磁気学 FAQ
- 電磁気学 (議論のページ)
- 岡部の Web に公開の文書
- 岡部のトップページ

目次

第1章	序論	1
1.1	電磁気学は何を学ぶ学問か............................	1
1.2	電場と磁場	2
1.3	静電場	4
1.4	静磁場	4
1.5	動的な場	6
1.6	マクスウェル方程式	6
1.7	ポテンシャル	7
1.8	まとめ	8
第2章	スカラー場とベクトル場	9
2.1	面積分	9
2.2	スカラー場の勾配	13
2.3	ベクトル場の発散	15
2.4	デルタ関数	19
2.5	ベクトル場の回転	21
2.6	線積分とストークスの定理............................	24
2.7	発散も回転もある場	28
第 3章	電磁場の基本方程式	30
3.1	静電場の性質	30
3.2	静磁場の性質	33
3.3	動的電磁場	48
第4章	物質と電磁場	51
4.1	導体	51
4.2	誘電体	53

4.3	磁性体
4.4	$E-H$ 対応 $(Q-Q_m)$
4.5	静電磁場の計算
4.6	自由電流を磁化で表現する64
第5章	ポテンシャル 67
5.1	スカラーポテンシャル
5.2	ベクトルポテンシャル
5.3	動的な場のポテンシャル
5.4	ゲージ
5.5	ポテンシャルと回路理論
第6章	磁場とベクトルポテンシャル 79
6.1	静電場との相似性
6.2	直線電流
6.3	ソレノイド
6.4	微小電流ループ
6.5	ベクトルポテンシャルは実在する場か...................... 85
6.6	ファラデーの電磁誘導の法則
6.7	ベクトルポテンシャルの測定 90
第7章	力とエネルギー 91
7.1	ローレンツ力と磁石に働く力91
7.2	古典的力と量子論的力
7.3	電気エネルギー
7.4	磁気エネルギー
7.5	運動量の増減と応力テンソル 101
7.6	エネルギーの増減とポインティングベクトル
第8章	動的電磁場 108
8.1	δ 関数励振の解
8.2	点電荷の発生
8.3	電磁波の発生
第9章	導体とポテンシャル 123
9.1	導体内でのポテンシャル

9.2	導体表面でのポテンシャル	124
9.3	導体と電荷の作る静的なスカラーポテンシャル	125
9.4	導体と平行な電流素片の作る静的なベクトルポテンシャル	127
9.5	導体と垂直な電流素片の作る静的なベクトルポテンシャル	128
9.6	方形柱ソレノイドの作る磁場	130
9.7	導波管中の電磁波	133
9.8	空洞中の電磁波.................................	139
第10章	相対性原理	140
10.1	相対性原理	140
10.2	四元ベクトル	142
10.3	計量テンソル	146
10.4	電磁気学の相対論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	148
10.5	一定速度で移動する電荷の作る電磁場..................	152
10.6	リエナール・ウィーヘルトポテンシャル................	153
10.7	誘導起電力	154
10.8	物質のある場合の相対論...............................	155
10.9	マクスウェル応力,ポインティングベクトル,電磁エネルギー......	156
第11章	パラドックス	159
11.1	平行平板キャパシタに挿入された誘電体に働く力...........	159
11.2	磁場の中心	160
11.3	強力な磁場中で動くモータの回転子に巻かれたコイルに働く力......	160
11.4	動く磁石が発生する電場................................	161
11.5	平行移動 2 電荷間に働く力	161
11.6	磁場力の消失....................................	162
11.7	ファインマンの作用反作用のパラドックス	162
11.8	ファインマンの角運動量のパラドックス...............	163
11.9	パフ・パフの角運動量のパラドックス...............	163
11.10	トロートン・ノーブルのトルクのパラドックス	164
11.11	霜田の磁石と運動電荷の作用反作用のパラドックス..........	165
11.12	テレゲンの磁化に働く力のパラドックス...............	165
11.13	ヒント	166
付録 A	一次元の電磁気学	169
A.1	静電場	169

A.2	静磁場	171
A.3	動的な場	172
	物に満住をポニンシャル	174
	四広等体と小ナノンヤル 辺に道体	174
В.1 D.9		177
В.2 Д.2		177
B.3	超伝导インダクダンス	170
В.4 Д.5		179
B.5		180
B.6	超伝導線路のインタクタンス	181
付録 C	単位系について	184
C.1	単位に関する一般的手法..............................	184
C.2	電磁気学における力の量方程式	186
C.3	時変系の量方程式	191
C.4	対称系における電流の定義................................	194
C.5	単位系の歴史と定数................................	197
C.6	単位系における単位の名称................................	199
C.7	基本単位系	201
C.8	単位の換算....................................	204
C.9	組み立て単位...................................	207
C.10	再び対称系について(γ 不要論)	210
付録 D	作田積分	215
D 1	ラグランジュ・ダランベールの仮想変位の原理	215
D 2	ラグランジュの運動方程式	210
D.3	ラグランジュの未定係数法	219
D.0 D.4		210
D.1 D.5	3.3 日前の赤空・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	222
D.6	雷磁気学のラグランジアン	225
D.0		220
付録 E	ベクトルの公式	227
付録 F	パラドックスの解答	228
F.1	平行平板キャパシタに挿入された誘電体に働く力	228
F.2	磁場の中心	229

F.3	強力な磁場中で動くモータの回転子に巻かれたコイルに働く力......	230
F.4	動く磁石が発生する電場..............................	230
F.5	平行移動 2 電荷間に働く力	231
F.6	磁場力の消失	231
F.7	ファインマンの作用反作用のパラドックス...............	232
F.8	ファインマンの角運動量のパラドックス.............	233
F.9	パフ・パフの角運動量のパラドックス...............	234
F.10	トロートン・ノーブルのトルクのパラドックス	235
F.11	霜田の作用反作用のパラドックス	237
F.12	テレゲンの磁化に働く力のパラドックス...............	237
F.13	パラドックスに対する考え方..............................	238

図目次

1.1	磁石は微小な永久電流ループの集合体である。	2
1.2	ローレンツ力: 静止している電荷は電場を, 動いている電荷は加えて磁場を	
	感じる。	3
1.3	磁石は等価なソレノイドに置き換えることができる。	5
2.1	地球全体の受ける太陽光エネルギーは,各微小面積の受けるエネルギーの総	
	和で得られる。.................................	10
2.2	任意のベクトル a と平行な光線により,二つの微小面積が対応する。	11
2.3	z 方向にだけ変化するスカラー場の面積分は,xy 平面に平行なスライスで行	
	\mathfrak{H}_{\circ}	12
2.4	閉局面で囲まれた領域を賽の目に切る。..............	15
2.5	閉局面上の面要素を見込む立体角。	17
2.6	原点を小さな球面で囲む。.............................	18
2.7	$L \rightarrow 0$ とすると,一次元空間でのデルタ関数が得られる。	20
2.8	面ベクトルと直線電流の作る磁場ベクトルとの外積は,面内で頭頂点を向く。	22
2.9	閉曲線に沿って線積分を行う。	24
2.10	閉曲線に囲まれた領域を x 軸に沿って千切りにする。	25
2.11	閉曲線で囲まれた領域を分割する。	26
2.12	閉曲線を二つの積分路に分割する。	27
2.13	発散も回転もある場の断面図。(a)円柱,(b)球。	29
3.1	特異性を緩めた電場と電荷密度(a = 1)。	32
3.2	断面積 A のソレノイドの作る磁場。 	34
3.3	不連続な磁場 $oldsymbol{B}_{in}$ に,右上図の磁荷 Q_m (S にわたって一様に拡がっている)	
	の作る不連続な磁場 $oldsymbol{B}_m$ を加えると,下の連続な磁場 $oldsymbol{B}$ になる。	35
3.4	微小ソレノイドと閉曲面 S の交差。d S は S の一部。	36

3.5	電流ループを厚さの薄い微小ソレノイドで分割する。dl の書かれた濃いハッ	
	チの四角形が 図 3.4 のソレノイドに対応する。	37
3.6	閉曲線と鎖交する放射状電流は立体角で計算できる。	42
3.7	微小磁石の磁荷モデルと電流モデルの作る磁場 $m{B}$ を真横から見る $(a=1)_{\circ}$	47
4.1	一つのミクロな電気モーメントに対する分極ベクトル。	53
4.2	分極ベクトルの例。実線で示した直線領域にのみ,上向きのベクトル場が存	
	在している。・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54
4.3	キャパシタ内の誘電体における分極は,電場の方向に発生する。	56
4.4	一つのミクロな磁気モーメントに対する磁化ベクトル。	57
4.5	磁化ベクトルの例。実線で示した板状領域にのみ,上向きのベクトル場が存	
	在している。	58
4.6	コイル内に置かれた棒状の磁性体における磁化は,常磁性体では磁場の方向	
	を向く。	60
4.7	永久磁石の内部磁場は,磁化と同じ方向に発生する。	61
4.8	電流 I の作る $oldsymbol{M}=Ioldsymbol{S}/V_{\circ}$ この大きさは $M=I/l$ となる。	
	$oldsymbol{H}$ は下面の – Q_m へ吸い込まれる成分もあるので,分極中では大きく,外で	
	は小さくなる。...............................	65
4.9	複数のコイルにより作られたソレノイドの分割。駆動電源が必要な場合は左	
	の長方形のループ内に置かれる。	66
6.1	直線電流が作るベクトルポテンシャル(実線)と磁場(破線)の概要。	82
6.2	負に帯電した円柱と正に帯電した円柱を少しずらして重ねると, ほぼ – $\sin heta$	
	に比例した電荷分布が実現する。	82
6.3	ソレノイドが作るベクトルポテンシャル(実線)と磁場(破線)の概要。	83
6.4	電位の異なる領域を通った電子ビームを合成すると,偏向する。	85
6.5	ベクトルポテンシャルの異なる領域を通った電子ビームを合成すると,偏向	
	する。	87
6.6	変成器の構成。.................................	89
7.1	磁場による力は破線で示す力線垂直面に沿って働く。	92
7.2	ベクトルポテンシャルの異なる領域を通る二つのビームの干渉縞は移動する。	94
7.3	誘電体を途中まで入れたキャパシタは極板間に引き込まれる。......	96
7.4	棒状の磁性体を途中まで入れたインダクタ。B は不連続に描かれているが,	
	実際には各不連続面より四方へ向かう発散があり,それにより連続性が保た	
	れている。	98

8.1	対称励振により発生する対称なポテンシャルの半径方向の変化。	112
8.2	非対称励振により発生する電場は,注入先より注入元へ向う。......	117
9.1	導体表面付近の電場と面電荷および磁場と面電流。厳密に静的な場合には B ₀	
	という固定磁場が追加される。	125
9.2	導体内のポテンシャル。電場と異なり,ポテンシャルは表面で連続でなけれ	
	ばならない。面垂直方向の微分は表面で不連続となる。	125
9.3	下半分に導体のある場合の点電荷の作るスカラーポテンシャル。あまり値が	
	大きくなる点電荷付近は描画を省いている。	126
9.4	下半分にある導体に平行な電流が作るベクトルポテンシャル。ベクトルの大	
	きさは図 9.3 の ϕ と比例する。	128
9.5	下半分にある導体に垂直な電流が作るベクトルポテンシャル。スカラーポテ	
	ンシャルと異なり,ベクトルが導体内にも存在する。	129
9.6	方形ソレノイドの作るベクトルポテンシャルの上面図。	131
9.7	方形ソレノイドの作るベクトルポテンシャルの別解の上面図。......	132
9.8	ストリップ線路のベクトルポテンシャルの別解および電磁場(実線ベクトル	
	は電場,破線ベクトルは磁場)。スカラーポテンシャルは描かれていないが,	
	極板に平行に上に高くなっていく。	135
9.9	方形導波管 TE ₁₀ のベクトルポテンシャルおよび電磁場(実線ベクトルは電	
	場,破線ベクトルは磁場)。	137
9.10	方形導波管 TM ₁₁ のベクトルポテンシャルおよび電磁場(実線ベクトルは電	
	場,破線ベクトルは磁場)。	138
10.1	S' 系は S 系に対し, <i>x</i> 軸方向に V の速度で移動している。	141
11.1	平行平板キャパシタに挿入された誘電体は極板間に引き込まれる。	160
11.2	静止磁場中を動く導体と,静止導体に対し磁場が動く場合。.......	161
11.3	(a)電荷が動いて見える S 系と,(b)止まって見える S′ 系では,電荷の受	
	ける力が異なるのか。	162
11.4	二つの移動電荷に働く力には、作用反作用の法則が成立しない。	
	左: 点電荷, 右: 面電荷	162
11.5	磁場を弱めていくと,二つの球に与えられる角運動量の総和が0でなくなる。	163
11.6	一定磁場のもとで,二つの球に与えられている電荷を変化させると,角運動	
	量の総和が0でなくなる。.................................	164
11.7	静止している斜めの関係にある二つの電荷の間には斥力しか働かないが,こ	
	れらが動いて見える系で見ると,移動方向垂直の力が発生する。	164

xi

11.8	円板状磁石に向かって移動する電荷。	165	
11.9	回転のある磁場中に置かれた上向きの磁化にかかる力。左: 棒磁石のように		
	描いた磁荷分極モデル,右: 輪状のコイルのように描いた磁化電流モデル	166	
D.1	動滑車と静滑車により構成された系。	223	
F.1	キャパシタの端では電場が乱れている。..................	228	
F.2	2 枚のシート状電荷が互いに及ぼしあう力.................	232	

表目次

C.1	単位系による $\{arepsilon_0\}, \{\mu_0\}$	
	$c_{ m c},c_{ m m}$ は CGS,MKS 単位系での光速値で約 3 · 10 ¹⁰ ,3 · 10 ⁸ 。	189
C.2	力の方程式の係数 (*印は現在磁荷の概念が無くなったため,不要).....	189
C.3	各単位系の特徴と定数の値	
	単位欄の x には ab や stat など,各単位系の接頭語が入る。	199
C.4	定数と基本単位の換算表	
	$c_{ m c},\ c_{ m m}$ は CGS および MKS 単位系における光速で,およそ 3·10 ¹⁰ および	
	3.10^8 °	206
C.5	磁気系組み立て単位の換算表	208
C.6	電気系組み立て単位の換算表	209
C.7	混合系組み立て単位の換算表	210
C.8	完全対称系 (CGS に近い) の定数と基本単位の換算表	212
C.9	完全対称(MKS に近い)の定数と基本単位の換算表	
	$\lambda\mu_0$ と $arepsilon_0/\lambda$ に対称性を壊さないように定数を入れている。	
	stm と llm において n=3 にすると,MKSA の 10 ⁷ と同じ定数になる。	214

第1章

序論

本章では、本書で述べる電磁気学の式について、その誘導のあらましを事前に述べておく。 本書は、いったんは電磁気学を学んだ人を対象に記載されているが、初学の人でも読めるよう に記載したつもりである。しかし、初学の人には、本章の式の意味はほとんど分からないであ ろう。それは気にしなくてよい。というのは、本章は、単に、これから展開される論旨を述べ ているだけであるからである。

1.1 電磁気学は何を学ぶ学問か

電磁気学を学ぶと,面積分,線積分,div,rotと,どんどん新しい概念が出てきて,それら を追いかけているうちに,やがて分らなくなって放棄してしまうことが多い。せめてゴールが 分れば,もう少し,勉学を続けようという動機付けもできるのであろうが,という感想を持つ 人も多いだろう。

物理学はいずれも,同じような構成でできている。例えば,力学は,一定重力場での落下現 象といった,簡単に実験できる基本的な事実から類推して,ニュートンの運動方程式を見出 す。次は,この式を利用して,もっと複雑な系の問題を解いてみる。円運動,惑星運動,単振 動,さらには剛体や流体の運動にまで拡張可能であり,その結果から,ニュートンの運動方程 式の正当性が再確認できる。

電磁気学でも同様である。電荷間,磁荷間のクーロンの法則,磁荷と電流の関係,ファラ デーの法則といった基礎的事実から類推して,基本方程式を誘導する。これがマクスウェルの 方程式である。次は,この式を解いて,もっと複雑な問題,例えば電磁波のような動的な問題 にまで拡張し,マクスウェルの方程式の正当性を再確認していく。

電磁気学が力学と大きく異なる点は、マクスウェルの方程式に辿りつくまでに、かなりの手 間がかかることである。しかも、基本方程式が一つではなく、数本あることである。このた め、これらの方程式の誘導の過程から、どんどん、使える方程式を使って、適用事例を示して

図 1.1 磁石は微小な永久電流ループの集合体である。

いってしまうことが多い。こうした結果,どの本でも通常,マクスウェルの方程式は,ずいぶん後に提示される。すべての方程式が提示されから,それらを使って示されるのは,電磁波ぐらいのものである。こうした,息の長い論述となるため,なかなか最後まで着いてこられる人が多くないのであろう。

しかし,電磁気学はかなり完璧な学問である。ニュートンの力学以後に現われたアインシュ タインの相対性理論でも,まったく矛盾が生じなかったばかりか,むしろ相対性理論の推進役 を果したという意味で,ぜひとも,全体をつかんでほしい。

1.2 電場と磁場

電磁気学(electro-magnetism)は電荷(electric charge)同士に働く力と、磁石(magnet) の磁極(magnetic pole)同士に働く力の解析から形成されていった。前者は電場(electric field)、後者は磁場(magnetic field)である。また合わせて電磁場(electro-magnetic field) という。なお、これらは物理系の呼び方であって、工学系では電界(electric field)、磁界 (magnetic field)、電磁界(electro-magnetic field)という。私は工学系なので、電界・磁界 と呼びたいところであるが、個人的趣味によって電場・磁場を用いる。分野によって用語が異 なるは不幸なことであるが、分野ごとに長い歴史を背負っているので、簡単には統一できない のが実状である。*1

電流(current)も磁場を作り出すことができるし,磁場の電流は力を受ける。現在,磁石は,図 1.1 に示すように,その中にたくさんのループ状の微小電流を持つことが知られているので,結局,磁場は電流と電流に働く力である。

電荷と電荷に働く力を,前者の電荷に着目してみよう。この位置を徐々に変えると受ける力 は徐々に変化していく。何となく,後者の電荷がまわりに何らかの影響力を有しており,それ を感じているようにみることができる。このような影響のおよぶ範囲を**場**(field)と呼ぶ。こ

^{*1} 私自身,長いこと用語の制定に関わったので,この難しさはよく理解している。

の立場で,後者の電荷は電場と呼ばれる場を張っていると考え,前者の電荷はそれを測定する 手段と考える。測定する電荷を特に区別したいときには,**検電荷**(testing charge)と呼ぶ。

電流は電荷の移動であるから,電荷は動いていると磁場の影響を受け,止まっていても電場の影響を受けることになる。あちこちに電荷や電流があるとき,そこをある検電荷 q が速度 v で動いているときに受ける力は,図 1.2 に示すローレンツ力 (Lorentz force) であり,式で与えると以下のようになっている。*²

$$\boldsymbol{F} = q\left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}\right)$$

Eを電場,**B**を磁場と呼ぶ。電荷が動くとその移動方向に垂直に力を受けることも不思議 であるが,移動方向にかかわらず,移動方向とある磁場ベクトルとの外積で力が決まるのが, さらに興味深い。

図 1.2 ローレンツ力:静止している電荷は電場を,動いている電荷は加えて磁場を感じる。

(以下,囲み記事は読み飛ばしても差し支えない)

二つのベクトル A とベクトル B の積には二種類の定義がある。一つは内積 (inner product) またはスカラー積 (scalar product) といい, $A \cdot B = A_x B_x + A_y B_y + A_z B_z$ とスカラー量となる積である。二つのベクトルの挟む角度を θ として, $|A||B|\cos\theta$ でも計 算できる。もう一つは外積 (outer product) またはベクトル積 (vector product) といい, $A \times B = i(A_y B_z - A_z B_y) + j(A_z B_x - A_x B_z) + k(A_x B_y - A_y B_x)$ とベクトル量となる 積である。二つのベクトルに垂直で, $|A||B|\sin\theta$ の大きさを持つ。取り得る方向は二方向あ るが, A から B に右ネジを回したときに,ネジの進む方向となる。本書では内積,外積と いう言葉を用いる。

電場や磁場はまわりに置かれた電荷や電流が作り出す。ここで、重要な性質がなりたつ。場 の原因となる電荷や電流が複数存在するとき、全体の電荷と電流が作り出す電場や磁場は、一 つ一つの電荷なり電流が作り出す電場や磁場のベクトルを合成になるのである。これを**重ね合** わせの原理(principle of superposition)という。つまり、電磁気学は、これら場の概念と重 ね合わせの原理によって、美しく体系化されているといっても過言ではなかろう。

^{*&}lt;sup>2</sup> 検電荷や検電流のように場を感じる側の変数は q, i とし,場を作り出す変数は Q, I, また両者共,小文字, 大文字の差が付けられない場合は前者には「'」を付けるのを原則としている。

1.3 静電場

電場は電荷により作られ,磁場は電流が作り出す。重ね合わせの原理が成立するから,一つ の電荷が作る電場,一つの微小な長さの電流が作る磁場が分かれば,任意の個数の電荷,ある いは電流の作る電磁場を計算することができる。

まず,静止した電荷 Q の作る電場は次の**クーロンの法則**(Coulomb law)で与えられる。 ε_0 は**電気定数**(electric constant)と呼ばれる定数である。r は Q から q を見たときの位置ベク トルである。

$$\boldsymbol{E} = \frac{Q}{4\pi\varepsilon_0} \frac{\boldsymbol{r}}{r^3}$$

この式から, *E* の発散と回転について, それぞれ積分形を求めると, 次のきれいな形が得られる^{*3}。

(**E** の発散の積分形)
$$\oint_{S} d\mathbf{S} \cdot \mathbf{E} = \frac{1}{\varepsilon_{0}} \int_{V} dV \rho$$

(**E** の回転の積分形)
$$\oint_{S} d\mathbf{S} \times \mathbf{E} = 0$$
 (1.1)

なお、 ρ は電荷密度である。また、 \oint_S とは、体積 V を囲む閉曲面 S での面積分を示している。

1.4 静磁場

磁場は、もともと磁石間に働く力から定義された。磁極には、電荷に対応する磁荷 (magnetic charge) Q_m が存在し、それが磁荷のクーロンの法則 (Coulomb law of magnetic charge) に したがう力を及ぼしあう。任意の磁荷 Q_m が作る磁場は以下の式で表される。 μ_0 は磁気定数 (magnetic constant) と呼ばれる定数である。

$$\boldsymbol{H} = \frac{Q_m}{4\pi\mu_0} \frac{\boldsymbol{r}}{r^3} \tag{1.2}$$

H は磁場の強さと呼ばれる量であり、当初は、磁場といえば、これを意味したが、現在は $B = \mu_0 H$ で与えられる Bが使われる。

その後,電流も磁場を発生すること,さらに,図 1.1 に示したように,磁石に中には無数の 電流ループが存在し,それらが永久に保持されていることなどが分かってきて,磁場の本質が 電流とされたのである。例えば**棒磁石**(bar magnet)に代表される細長い磁石は,両端に正

^{*&}lt;sup>3</sup> 初学の人はこれらの式の意味を理解しようとする必要はない。単に流れを追っていってほしいことと,学習の 進行に合わせ,流れを確認するために利用してほしい。

負(N と S)の磁荷が存在するが、図 1.3 に示すように、十分に細い有限の長さのソレノイド (solenoid) と呼ばれるコイルと等価になる。ここで、ソレノイドの側面には、ソレノイドの軸 を囲むように電流が流れるが、その単位長当たりの電流密度は $K = Q_m/\mu_0 S$ で与えられる。 Sはソレノイドの断面積である。また、電流の方向は、右ネジ(もっとも普通のネジ)を、尻 尾が負磁荷(S)、先端が正磁荷(N)を向くように置き、そのネジを進めるように回転する方 向となる。これを右ネジの関係(right screw relation)と呼ぶ。

磁石の場合,磁石の内部の磁場を測定するのはきわめて困難であるが,ソレノイドは中空で あるので,それも可能である。その結果,ソレノイドの外部では N 極から S 極に磁場ができ るのに対し,内部では,S 極から N 極に向かっていることが判明した。つまり,電気力線は正 極から発生して負極で消滅するのに対し,磁力線は電流を取り囲むように発生するのである。 式 (1.2) にこのソレノイド内の磁場を加えたものから,**B** の回転と発散について,それぞれ積 分形を求めると,次のきれいな形が得られる。

(**B**の回転の積分形)
(**B**の発散の積分形)
(**B**の発散の積分形)

$$\oint_{S} d\mathbf{S} \times \mathbf{B} = \mu_0 \int_{V} dV \mathbf{J}$$
 (1.3)
 $\oint_{S} d\mathbf{S} \cdot \mathbf{B} = 0$

なお,ここでもSは任意の体積Vを囲む閉曲面であり,Jは電流密度である。

ここで,式(1.3)の回転の積分形*⁴であるが,多くの書では,アンペールの法則として,左辺 が線積分,右辺が面積分のものが記載されている。しかも,ビオ・サバールの法則(Biot-Savart law)による電流素片が作る磁場から誘導する場合が多い。しかし,ビオ・サバールの法則自 体,理論的に得られたもので,実験との対応がとりづらいことから,本書では,ソレノイドの 作る磁場から誘導した。

図 1.3 磁石は等価なソレノイドに置き換えることができる。

^{*4} この式は著者が自力で誘導したものであり、大変気に入っている。

1.5 動的な場

あと二つの重要な法則は、動的なものである。まず、磁場が変化するとき、そのまわりを取り囲む配線上に**起電力**(electro-motive force)が生ずるというもので、次のファラデーの法則(Faraday law)で与えられる。

$$\oint_{\mathbf{C}} d\boldsymbol{r} \cdot \boldsymbol{E} = -\frac{\partial}{\partial t} \int_{\mathbf{S}} d\boldsymbol{S} \cdot \boldsymbol{B}$$

ここで S は任意の閉曲線 C によって囲まれた曲面である。この法則は,最初は配線の存在す る場合に確認されたが,やがて,配線のない空間にも電場が発生し,それが上式を満たすこと が確認された。この法則を考慮し,電場の回転は修正され,式 (1.1)には磁場の影響が組み込 まれる。

$$(\boldsymbol{E} \, \mathcal{O} \, \square \, \mathrm{E} \, \mathcal{O} \, \mathrm{E} \,$$

最後の法則として,電流については電荷の減少につながるという**電流連続の法則**(current continuity law)が成立する。

$$(\boldsymbol{J} \, \mathcal{O}$$
発散の積分形) $\oint_{\mathrm{S}} d\boldsymbol{S} \cdot \boldsymbol{J} = -\frac{\partial}{\partial t} \int_{V} dV \, \rho$

これと矛盾しないようにするためには,磁場の回転を修正する必要があり,式 (1.3) は次式の ようになる。

$$(\boldsymbol{B} \ \mathcal{O} \square 転の積分形) \qquad \oint_{S} d\boldsymbol{S} \times \boldsymbol{B} = \mu_0 \int_{V} dV \left(\boldsymbol{J} + \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \right)$$

右辺に現れる電場の時間微分 $\varepsilon_0 \partial E / \partial t$ は、変位電流(displacement current)と呼ばれ、マク スウェル(Maxwell)が理論的に導入したものである。

1.6 マクスウェル方程式

動的な *E*, *B* の発散,回転を与える積分形に対応する次の四つの微分形の式は,マクスウェ ル方程式(Maxwell equations)と呼ばれ,電磁気学の基礎方程式である。左側の式が積分形 であり,右側が微分形である。微分形の導出法については第2章に示すが,要するに,積分形 の囲んでいる体積 *V* で割り,*V* を微小にすると,発散積分は div になり,回転積分は rot に なるとだけ覚えておけば,微分形の各式は簡単に導かれる。

	積分形		微分形
(E の発散)	$\oint_{\mathrm{S}} doldsymbol{S} \cdot oldsymbol{E} = rac{1}{arepsilon_0} \int_{\mathrm{V}} dV ho$	\rightarrow	$\operatorname{div} \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho$
(E の回転)	$\oint_{ m S} doldsymbol{S} imes oldsymbol{E} = -rac{\partial}{\partial t} \int_{V} dV oldsymbol{B}$	\rightarrow	$\operatorname{rot} \boldsymbol{E} = -rac{\partial \boldsymbol{B}}{\partial t}$
(B の発散)	$\oint_{\mathbf{S}} d\boldsymbol{S} \cdot \boldsymbol{B} = 0$	\rightarrow	$\operatorname{div} \boldsymbol{B} = 0$
(B の回転)	$\oint_{\mathrm{S}} d\boldsymbol{S} \times \boldsymbol{B} = \mu_0 \int_{\mathrm{V}} dV \left(\boldsymbol{J} + \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \right)$	\rightarrow	$\operatorname{rot} \boldsymbol{B} = \mu_0 \boldsymbol{J} + \mu_0 \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t}$
電流連続の法則の	の微分形も示しておく。		

$$(\boldsymbol{J} \, \mathcal{O}$$
発散) $\oint_{\mathbf{S}} d\boldsymbol{S} \cdot \boldsymbol{J} = -\frac{\partial}{\partial t} \int_{V} dV \, \rho \qquad \rightarrow \quad \operatorname{div} \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0$

1.7 ポテンシャル

以上で、電磁気学の基本方程式の概要について述べたが、量子力学が発展するにつれ、実は 電場・磁場よりも、ポテンシャル(potential)(スカラーポテンシャル(scalar potential)と ベクトルポテンシャル(vector potential))のほうが本質的であることが判明してきた。そ ういった意味では、すべてをポテンシャルを基礎にして書きたいところであるが、ポテンシャ ルの効果の実験的検証が直接的出ないこともあり、従来の書のように、まず電場・磁場につい て記述し、その後、ポテンシャルとの関連を付けてから、改めてポテンシャルからの導入を行 うこととする。なお、静電場はスカラーポテンシャルφから、また、静磁場はベクトルポテン シャル *A* から導かれる。

$$E = -\operatorname{grad} \phi$$

 $B = \operatorname{rot} A$

また動電場と動磁場は次式によりポテンシャルと結び付いている。

$$E = -\operatorname{grad} \phi - \frac{\partial A}{\partial t}$$
$$B = \operatorname{rot} A$$

これらを使って場の源との関係を導くと次のように与えられる。

$$\left(\nabla^2 - \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \right) \phi = -\frac{1}{\varepsilon_0} \rho$$
$$\left(\nabla^2 - \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \right) \mathbf{A} = -\mu_0 \mathbf{J}$$

ただし、**ローレンスゲージ**(Lorenz gauge)*5と呼ばれる次式を仮定している。

$$\operatorname{div} \boldsymbol{A} + \mu_0 \varepsilon_0 \frac{\partial \rho}{\partial \phi} = 0$$

これらの式で $\mu_0 \varepsilon_0 = 1/c^2$ と光速になる。このことから、電磁気の波動が光であることが推測 されたのである。

1.8 まとめ

本章では電磁気学の習得の際,どんな式をゴールとしているかをまとめてみた。現在の時点 でこれらの式の内容を知っている必要はないが,本書のみならず,多くの電磁気学の書では, これらを目標にして書かれている。したがって,章単位でよいので,ときどき,この章に戻っ て,どこまでが説明されたかを確かめるのがよいであろう。

なお,微分形は積分形の後にまとめて示したが,本書でもそうであるように,積分形を示す と直ちにその微分形を学ぶことが多い。また,ポテンシャルについて,特にベクトルポテン シャルについては,本書ではその重要性に着目し,かなりのページを割いているが,書によっ てはあまり記載されていないことが多い。

⁸

^{*5} ローレンツ (Lorentz) とローレンス (Lorenz) は異なる人である。

第2章

スカラー場とベクトル場

電磁場のように、質点や物質にかかる力などが、観測位置の移動につれ緩やかに変化する ような場合^{*1}、力などの場(field)が存在するという。本章では、このような場の数学的な取 り扱いについて学ぶ。電位のように、各点でスカラー量により定義される場を、スカラー場 (scalar field) という。また、電場や磁場のように、各点でベクトルにより定義される場を、ベ クトル場(vector field) という。

2.1 面積分

スカラー場には勾配,ベクトル場については発散,回転といった重要な概念がある。これら の概念の導入にはいずれも閉曲面表面に沿う面積分が重要な役割を演ずる。

面積分(surface integral)とは次のような概念である。例えば、地表の単位面積当たり受け る太陽光のエネルギーが簡単な関数 f で与えられるものとする。f は、地球を中心とした極座 標の θ 、 ϕ の関数とするのがよいだろう。このとき地球全体で受ける太陽光のエネルギーの総 和を求めろといわれたら、図 2.1 のように、地球の表面全体を十分小さな面積 ΔS_i で分割し、 各面積ごとのエネルギー $\Delta S_i f$ を求め、それを合計すればよい。

$$\sum_i \Delta S_i f$$

ここで、 ΔS_i を十分小さくしたときの極限を次式で表す。

$$\int dS f$$

これが面積分である。つまり、面積分の \int は本来 \sum のことであり、dSは ΔS_i のことであ ると理解してもらいたい。通常、積分というと大きく二つの理解の仕方がある。一つは、ここ

^{*1} 場の発生源である電荷や電流のあるところでは急変したり発散したりすることがある。

図 2.1 地球全体の受ける太陽光エネルギーは、各微小面積の受けるエネルギーの総和で得られる。

に示したような「総和の極限」という理解である。通常の積分である**リーマン積分**(Riemann integral)も, 微小区間 $\Delta x \ \delta f$ に掛けて合計した $\sum_i \Delta x_i f_i$ の極限と定義されている。

もう一つの理解の仕方は積分演算という考え方である。つまり, x^n から $x^{n+1}/(n+1)$ を作 り出すように, 関数から別の関数を作り出す演算であるという理解の仕方である。これは, 積 分に段々慣れてくるとでき上がる概念であるが, 面積分をこの概念のように理解しようとする と, 意味不明になる。面積分を理解するにはあくまでも「総和の極限」と解釈してほしい。し たがって, 積分を記載する際, よく見られるように, $\int f dS$ のように積分記号と dS で関数を 囲む形にする必要はなく, 順番は問題ではない。

地球に当たる光の全エネルギーを計算してみよう^{*2}。太陽の方向を極座標の軸方向とする と、光の強度は、緯度 θ (頭頂を 0° とする)が増える程、減っていくことから、 $f = I_0 \cos \theta$ で与えられる。また、経度方向 $d\phi$ 、緯度方向 $d\theta$ で囲まれた面積は、ほぼ $dS = a^2 \sin \theta d\theta d\phi$ で与えられるから、全エネルギーは、これらの積を合計して、 $\int I_0 \cos \theta a^2 \sin \theta d\theta d\phi$ で計算 できる。ただし、光は $0 < \theta < \pi/2$ の範囲でしか当たらないことを、考慮する必要がある。こ の積分は簡単に実行でき、 $= 2\pi a^2 I_0 \int \cos \theta \sin \theta d\theta = \pi a^2 I_0 \sin \theta^2 \Big|_0^{\frac{\pi}{2}} = \pi a^2 I_0$ となる。つま り、 I_0 に地球の断面積を掛けた結果となる。

もう一つ別の例を挙げよう。それは浮力の計算である。液体中の物体には圧力がかかっている。その合力が浮力となるのである。例えば、深さによらず一定の圧力 p を受けている物体を考えよう。この場合にも、物体の表面 S を微小面積 ΔS_i に分割する。各面積の受ける力は $-\Delta S_i p$ となる。ここで ΔS_i は、大きさ ΔS_i で、方向が物体の内から外を向き各面要素に垂直なベクトルである。浮力はこれらのベクトルの合力となる。

$$-\sum_i \Delta S_i p$$

この総和は極限として次のような面積分として表される。

^{*&}lt;sup>2</sup> 以後,太線と細線で囲まれた領域は,流れを掴むだけの人は,読み飛ばしてもらっても構わないコラムである。

$$-\oint_{\mathrm{S}} d\boldsymbol{S} p$$

∮に見られるように積分記号に○を付けたのは、閉曲面すべての面要素に対する総和を意味 する。

以上のように,面積分の概念は「総和の極限」として考えると理解しやすいが,演算子とし て考えると,絶対に理解できない。電磁気学に出てくるさまざまな面積分が理解できなくなる 最大の原因も,ここにあるので,あくまでも「総和の極限」であるという立場で理解してほし い。なお,∮のサフィックスは,ある体積を囲む閉曲面を指す。

ちなみに, *p* が一定の場合には, *p* を面積分の外に追い出せるが, 残る面積分は大きさ 0 の ベクトルとなる。

$$\oint_{S} d\boldsymbol{S} = \boldsymbol{0} \tag{2.1}$$

つまり、一定圧力中の浮力は0となる。

図 2.2 任意のベクトル a と平行な光線により、二つの微小面積が対応する。

式 (2.1) の証明は簡単である。この結果があるベクトル *a* になったと仮定してみよう。両辺に *a* 自身を内積の形で掛ける。まず,右辺は a^2 となる。一方,左辺の $a \cdot dS$ は, $adS\cos\theta$ となる。ここで θ は二つのベクトルのなす角度である。つまり,図 2.2 の四角柱 の断面積の *a* 倍になる。ただし、 θ が $\pi/2$ 以下であると正、以上であると負となる。ところ で、ある微小面積に着目し、それを *a* に平行な光線で照すと、一般に、図 2.2 に見られるよ うに、光線は閉曲面と二箇所で交わる。つまり、光の当たる表側と影側の、二つの対応する 微小面積が存在することになるのであるが、この二つの微小面積における $a \cdot dS$ は、断面積 の *a* 倍になるが、表側では負、影側では正となり、ちょうど打ち消し合って0 となる。した がって、式 (2.1) の左辺は、表側も裏側も含むため、0 となり、 $a^2 = 0$ が誘導される。この 結果、*a* は零ベクトルとなる。

次に,高さとともに圧力の変化する液体中での物体にかかる浮力を計算してみよう。 $p = p_0 + \rho g z \ge z$ 方向に変化しているとしよう。その場合の浮力は次式で与えられる。

$$-p_0 \oint_{\mathbf{S}} d\mathbf{S} - \rho g \oint_{\mathbf{S}} d\mathbf{S} \, z$$

このうち,第一項は式 (2.1) に示したように **0** となる。第二項は面積分部分が物体の体積となることが示される。

$$\oint_{S} d\boldsymbol{S} \, \boldsymbol{z} = \boldsymbol{k} V \tag{2.2}$$

ただし, *k* は *z* 方向の単位ベクトルである。結局,「浮力は物体の排除する液体の重量に等 しくなる」という**アルキメデスの法則**(Archimedes law)が導かれる。

図 2.3 z 方向にだけ変化するスカラー場の面積分は, xy 平面に平行なスライスで行う。

これを証明するには,まず,閉曲面を図 2.3 のように, *xy* 面と平行な面で輪切りにする。右辺は厳密には分割を無限に薄くした極限となるのだが,lim の記号は省略した。以後の議論でも,特に必要ない限り,lim の記号は省略する。

$$\oint_{\mathbf{S}} d\mathbf{S} \, z = \sum_{i=1}^{n} \int_{\mathbf{S}_{i}} d\mathbf{S} \, z_{i} = \sum_{i=1}^{n} z_{i} \int_{\mathbf{S}_{i}} d\mathbf{S}$$

各輪切り一枚ごとの側面の面積分 ∫ *dS* を求めるのであるが,各輪切り全体の面積分を行う と最初に述べたように 0 となるはずである。

$$\int_{\mathbf{S}_i} d\mathbf{S} + \mathbf{k} A_{i+1} - \mathbf{k} A_i = \mathbf{0}$$

ここで, A_iは i 番目の輪切りの底面の面積である。

この関係を使い,側面の面積分を面積差に置き換えることができる。さらに変形すると 証明が完了する。

$$\oint_{S} dS \, z = \sum_{i=1}^{n} z_{i} \, \mathbf{k} \, (A_{i} - A_{i+1}) = \mathbf{k} \left(\sum_{i=0}^{n-1} z_{i+1} \, A_{i+1} - \sum_{i=1}^{n} z_{i} \, A_{i+1} \right)$$
$$= \mathbf{k} \sum_{i=1}^{n-1} (z_{i+1} - z_{i}) \, A_{i+1} = \mathbf{k} V$$

いうまでもなく *x* や *y* の重みについても同様の結果が得られる。式 (2.1) や式 (2.2) など は、今後もしばしば利用される大事な式である。

2.2 スカラー場の勾配

面積分の応用として,スカラー場 φ の**勾配**(gradient)について述べよう。勾配とは,スカ ラー場が考えている領域で平均として,どちらの方向に強くなっていくかを示すものである。 前述の圧力場もスカラー場の一例であったが,圧力を面ベクトルで積分した結果は,圧力に勾 配がある場合にのみ浮力という力が現れた。そこで,次式のように面積分をスカラー場 φ の重 みを付けて実行してみよう。

$$\oint_{\mathbf{S}} d\boldsymbol{S} \, \phi$$

すると、 ϕ の大きいところの dS が強調される。つまり積分結果は ϕ の小さい辺りから大きい 辺りへ向くベクトルとなる。その結果はスカラー場の勾配の程度を表すことになる。これを**勾 配積分** (gradient integral) と呼ぼう。

この定義を利用すると、次式により、任意の点のまわりの小さな体積領域 ΔV の局所的な勾 配を定義することができる。勾配積分が ΔV に比例することから、勾配積分を ΔV で除して いる。この式で定義される量は ϕ の grad (gradient) 、もしくは単に勾配ともいう。

$$\operatorname{grad} \phi \equiv \lim_{\Delta V \to 0} \frac{1}{\Delta V} \oint_{S} d\boldsymbol{S} \phi$$
(2.3)

スカラー場 ϕ が比較的緩やかに変化する場合、この式は次式の微分により計算することができる。これを $\nabla \phi$ とも書く。

grad
$$\phi = \nabla \phi = i \frac{\partial \phi}{\partial x} + j \frac{\partial \phi}{\partial y} + k \frac{\partial \phi}{\partial z}$$
 (2.4)

▽(**ナブラ**, nabla)は、ベクトル表示されたベクトル微分演算子である。

$$abla \equiv oldsymbol{i} rac{\partial}{\partial x} + oldsymbol{j} rac{\partial}{\partial y} + oldsymbol{k} rac{\partial}{\partial z}$$

これを φ に左から形式的にベクトルとして掛け,そこで得られた形を見ると,微分形と同じに なることから,しばしば便利に用いられる表示法である。当然のことながら,純粋なベクトル ではないので, φ ▽ と書くことはできない。

スカラー場 ϕ が比較的緩やかに変化し、かつ領域が小さい場合には、この積分を一次の 近似の範囲内で簡単に計算することができる。まず領域の付近で ϕ をテイラー展開する。

$$\phi = \phi_0 + \frac{\partial \phi}{\partial x} \left(x - x_0 \right) + \frac{\partial \phi}{\partial y} \left(y - y_0 \right) + \frac{\partial \phi}{\partial z} \left(z - z_0 \right) + O^2$$

ここで、*∂ϕ*/*∂x* などは展開の係数であり、現在考えている範囲では一定値としてよい。

上式を一次の近似の範囲で勾配積分してみよう。一定値の積分は0であり, x, y, z に 比例する部分はそれぞれ iV, jV, kV になるので,次式が得られる。

$$\oint_{\rm S} d\boldsymbol{S} \, \phi = V \left(\boldsymbol{i} \frac{\partial \phi}{\partial x} + \boldsymbol{j} \frac{\partial \phi}{\partial y} + \boldsymbol{k} \frac{\partial \phi}{\partial z} \right) + \boldsymbol{O}^2$$

つまり、勾配積分の結果は閉曲面の形によらず、囲む領域の体積に比例する。

例として,水中の圧力のように, z方向に徐々に強くなるスカラー場を考えてみよう。

$$\phi = \phi_0 + \phi_z z$$

式 (2.4) を用いて, この grad を求めると確かに *z* 方向を向いており, スカラー場の面積分が 勾配の程度を表していることが理解できよう。

grad
$$\phi = \mathbf{k}\phi_z$$

また,電磁気学でよく現れる代表的なスカラー場として $\phi = 1/r$ があるが,これを上式に代入してみると,次式が得られる。

grad
$$\left(\frac{1}{r}\right) = i \frac{\partial (r^{-1})}{\partial x} + j \cdots + k \cdots$$

= $i \left(-r^{-2} \frac{x}{r}\right) + j (\cdots) + k (\cdots) = -\frac{r}{r^3}$

この右辺のベクトルは, **クーロンの法則**(Coulomb law)などに現れる原点を中心とした放射 状で距離の二乗に反比例する大きさを持つベクトル場になる。一般に, このような放射状で二 乗に反比例するベクトル場は**クーロン場**(Coulomb field)と呼ばれ, 電磁気学ではもっとも 頻繁に出現するベクトル場である。

次に大きな閉曲面上での面積分を計算してみよう。囲まれた領域を図 2.4 のように賽の目 に切ると,各微小領域では式 (2.3) が成立している。この式の左右を入れ替え,両辺を *dV* 倍

図 2.4 閉局面で囲まれた領域を賽の目に切る。

して全領域で合計すると、右辺は grad ϕ の体積積分になる。一方、左辺の面積分は境界面で 互いに打ち消し合い、最表面の面積分だけが生き残るから、次の積分定理が得られる。

$$\oint_{\mathbf{S}} d\boldsymbol{S} \, \phi = \int_{\mathbf{V}} dV \, \operatorname{grad} \phi$$

この式をスカラー場のガウスの定理(Gauss theorem of scalar field)と呼ぼう。

この式を含め、次節以後に現れる面積分を体積積分に結び付ける公式は、一般にガウスの定 理(Gauss theorem)と呼ばれ、同じような手順を、ベクトル場の発散積分や回転積分に対し て適用することで、発散や回転の微分形を求めることができる。

なお、grad については、もう一つ大事な性質が存在する。grad ϕ の微分形の定義の両辺に、 微小変位 $d\mathbf{r} = \mathbf{i}dx + \mathbf{j}dy + \mathbf{k}dz$ をスカラー的に掛ける。すると右辺はちょうど ϕ の全微分の 定義になる。

$$d\boldsymbol{r} \cdot \operatorname{grad} \phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz = d\phi$$

したがってこれを積分することにより、積分路の終点と始点の φ の差が得られる。

$$\int_{\mathbf{P}}^{\mathbf{Q}} d\boldsymbol{r} \cdot \operatorname{grad} \phi = \phi(\mathbf{Q}) - \phi(\mathbf{P})$$

このように線積分でも,面積分と同様に,線積分要素 *dr* とベクトル量の内積をとって,それ を足し合わせることで,線積分という概念が定義されるのである。この他,ベクトル量との外 積を足し合わせるとか,スカラー量を掛けて足し合わせる線積分も存在する。

2.3 ベクトル場の発散

ベクトル場として流体の各点の流速のようなものを考えよう。ある面を通過して単位時間当たり、どれだけ流れ出していくかは、ベクトルの面垂直成分と面積を掛ければ計算できる。このように、ベクトル場に対して、場を流れのように見なし、それがある領域からどのくらい流れ出ているかを示す概念を**発散**(divergence)と呼ぶ。ベクトル場に対して、これと同じ計算

をしたものを発散積分という。考えている面上で、ベクトル場が出たり入ったりするときに は、面全体を十分細かな微小面積に分割し、各微小面積で計算した結果を、合計すればよい。 つまり、ベクトルの面垂直成分を考え、それを面全体で積分すればよい。

$$\oint_{\rm S} d\boldsymbol{S} \cdot \boldsymbol{A}$$

これを**発散積分**(divergence integral)と呼び,ベクトル場の発散の程度を示すものとする。 例えば,クーロン場 *r*/*r*³ は,原点を中心に,外向きに光輪のように配列しているので,発散 積分は正となり,正の発散があることになる。

 $\operatorname{grad}\phi$ と同様に、一点の近傍の局所的発散の程度を次のように求めることができる。この式 で定義される量は A の div (divergence)、もしくは単に発散とも呼ばれる。

$$\operatorname{div} \boldsymbol{A} \equiv \lim_{\Delta V \to 0} \frac{1}{\Delta V} \oint_{\mathrm{S}} d\boldsymbol{S} \cdot \boldsymbol{A}$$

ベクトル場が比較的緩やかに変化する場合,この式は次の微分により計算することができる。 これを ▽·*A* とも書く。

div
$$\boldsymbol{A} = \nabla \cdot \boldsymbol{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

ベクトル演算子 ▽ と *A* の形式的な内積をとることにより,右辺の式の形が得られるので,こ れを ▽ · *A* と記載するが,あくまでも演算子であるので,*A* · ▽ と書くことはできない。

ベクトル場が比較的緩やかに変化し、かつ領域が小さい場合には、この発散積分を一次の近似で計算することができる。まず領域の付近で $A = iA_x + jA_y + kA_z$ をテイラー展開する。

$$\boldsymbol{A} = \boldsymbol{i} \left[A_{x_0} + \frac{\partial A_x}{\partial x} \left(x - x_0 \right) + \frac{\partial A_x}{\partial y} \left(y - y_0 \right) + \frac{\partial A_x}{\partial z} \left(z - z_0 \right) \right] \\ + \boldsymbol{j} \left[\cdots \right] + \boldsymbol{k} \left[\cdots \right] + \boldsymbol{O}^2$$

 $dS \cdot A$ を一次の近似の範囲で積分してみよう。一定値の面積分は0であり、 $x \Leftrightarrow y \Leftrightarrow z$ に比例する部分は、iV、jV、kVになるから、次のようになる。

$$\oint_{S} d\boldsymbol{S} \cdot \boldsymbol{A} = V \left(\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \right) + O^2$$

ただし, *i*, *j*, *k* の異なるもの同士の内積は 0 にした。ここでも,積分の結果は閉曲面の形 によらず,囲む領域の体積に比例する。

スカラー場と同様に,大きな閉曲面上での発散積分を計算することができる。囲まれた領域 を賽の目に切ると,各微小領域では上式が成立している。これを *dV* として全領域で合計する と, 左辺は div A の体積積分になる。一方, 右辺の発散積分は境界面で互いに打ち消し合い, 最表面の面積分だけが生き残るから, 次の面積分と体積積分を結び付ける式が得られる。

$$\oint_{\mathbf{S}} d\boldsymbol{S} \cdot \boldsymbol{A} = \int_{\mathbf{V}} dV \operatorname{div} \boldsymbol{A}$$

これは,厳密にはベクトル場のガウスの内積定理(Gauss inner product theorem of vector field)と呼ぶべきものであるが,三つのガウスの定理のなかでは,この定理がもっとも知られており,以後,単にガウスの定理(Gauss theorem)というと,これを指すものとしよう。

例として,クーロン場,**r**/r³の発散積分 ∮_S d**S** · **r**/r³ を考えてみよう。このベクトル場は, 電荷のような何らかの源が原点に置かれており,その結果,そこから放射状の方向を取り,原 点からの距離の二乗に反比例する大きさを持っている。この積分の結果は立体角を利用して次 のようになることが知られている。

$$\oint_{S} d\boldsymbol{S} \cdot \frac{\boldsymbol{r}}{r^{3}} = 4\pi \tag{2.5}$$

図 2.5 閉局面上の面要素を見込む立体角。

証明は、通常、ややトリッキーな方法によりなされ、立体角を利用する。発散積分の $dS \cdot r/r^3$ なる項は $dS \cos \alpha/r^2$ になる。ただし、 α は、二つのベクトル dS とr のなす角度 である。そこで $dS \cdot r/r^3$ は、dS を原点の方向から見た(つまりr の方向から見た)面積 $dS \cos \alpha \, \epsilon, \, r^2$ で除したものになる。つまり、図 2.5 に見られるように、dS を見た 立体角 になっている。立体角とは、この四角錐が、原点を中心とし半径1の球面に作る面積のこと である。もし、閉曲面が原点を囲んでいるときには、全閉曲面を見込む立体角の総和は 4π となるから、前式 (2.5) が成立する。

一方,閉曲面が点電荷を囲んでいないときには,点電荷から閉曲面の裏側を見る場合と, 表側を見る場合の二つの場合が発生する。いずれも見込む立体角は同じ値となるが,表側に ついては *dS* · *r* が負となるため,負の立体角となる。このため二つの場合を加えると0とな る。ひだが重なる閉曲面など,もっと複雑な場合でも,立体角の正負をきちんと考えること により,閉曲面が電荷を囲めば上式が成立し,囲まなければ0となることが導かれる。

図 2.6 原点を小さな球面で囲む。

しかし,この発散積分の手順も,次のように内積面積分の定理を用いると,著しく機械的, かつ簡単になる。まず場の div を求めてみよう。

$$\operatorname{div}\left(\frac{r}{r^{3}}\right) = \frac{\partial(xr^{-3})}{\partial x} + \frac{\partial(yr^{-3})}{\partial y} + \frac{\partial(zr^{-3})}{\partial z}$$
$$= \left(r^{-3} - 3xr^{-4}\frac{x}{r}\right) + \dots + \dots$$
$$= 3r^{-3} - 3(x^{2} + y^{2} + z^{2})r^{-5} = 0$$

ただし, 原点では被微分関数が ∞ となるので, 0 とは断定できないので注意が必要である。

ここで、目的の任意の閉曲面上での発散積分を考えよう。まず閉曲面が原点を囲まない場合 は、その内部の空間に内積面積分の定理を適用すると、 $\operatorname{div} \mathbf{A} = 0$ より左辺は0となる。これ より、S が原点を囲まない場合に対し、次式がただちに導かれる。

$$\oint_{\mathcal{S}} d\boldsymbol{S} \cdot \frac{\boldsymbol{r}}{r^3} = 0 \tag{2.6}$$

次に閉曲面が原点を囲む場合を考えよう。まずこの閉曲面の中に,図2.6 に示すように,原 点を中心とする小さな球面を考える。閉曲面の囲む空間から球の囲む空間を除外したいわば殻 状の空間に対して,内積面積分の定理を適用してみよう。そこでは div は 0 であるので,左辺 の体積積分は 0 となる。一方,右辺の面積分はこの殻空間を囲む全表面となるので,閉曲面上 の発散積分と球面上の発散積分を加えたものになる。しかし,球面上では dS は殻空間の外向 き,つまり原点の方向を向いている。これを通常の原点から外向きの dS に定義し直すと,符 号が反転する。

$$\oint_{S} d\boldsymbol{S} \cdot \frac{\boldsymbol{r}}{r^{3}} - \oint_{\text{$\mathcal{B}\mathcal{m}\mathcal{m}}} d\boldsymbol{S} \cdot \frac{\boldsymbol{r}}{r^{3}} = 0$$
(2.7)

この結果、閉曲面上での発散積分は球面上での発散積分と一致する。

第二項の球面上の積分はきわめて簡単に計算できる。というのは、球面上では dS と r の方向は完全に一致しており、球の半径を a とすると、 $dS \cdot r/r^3 = dS a/a^3 = dS/a^2$ となる。したがって、S が原点を囲む場合に対し、次のようになる。

$$\oint_{S} d\boldsymbol{S} \cdot \frac{\boldsymbol{r}}{r^{3}} = \oint_{\text{$\ensuremath{\mathbb{R}}$min}} d\boldsymbol{S} \cdot \frac{\boldsymbol{r}}{r^{3}} = \oint_{\text{$\ensuremath{\mathbb{R}}$min}} dS \frac{1}{a^{2}}$$
$$= \frac{1}{a^{2}} \oint_{\text{$\ensuremath{\mathbb{R}}$min}} dS = \frac{1}{a^{2}} 4\pi a^{2} = 4\pi$$
(2.8)

ここで ∮_{球面} dS は球の表面積 4πa² となることを利用している。この式と前式から閉曲面だけの発散積分が 4π になることが、ただちに導かれる。

このように、ベクトル場 *r*/*r*³ の発散積分を、内積面積分の定理で体積積分に置き換えると、 原点付近だけが特別であり、あとの空間の寄与はまったくないことが理解できよう。したがっ て、閉曲面が原点を囲むか囲まないかだけが重要であり、発散積分の結果が閉曲面の形に依存 しないことが分かる。このように閉曲面上の面積分が、源付近だけの特異性によって決定され るようなことは、電磁気でたびたび現れる現象である。

クーロン場の div を求めておこう。本節で示したように,原点以外では div は 0 である。問題は原点における div である。式 (2.8) から分かるように,原点を囲む積分は,体積によらず一定であるので,これを体積で割って得られる div は無限大に発散してしまう。

$$\operatorname{div}\left(\frac{\boldsymbol{r}}{r^{3}}\right) = \lim_{\Delta V \to 0} \frac{1}{\Delta V} \oint_{\mathcal{S}} d\boldsymbol{S} \cdot \frac{\boldsymbol{r}}{r^{3}} = \lim_{\Delta V \to 0} \frac{4\pi}{\Delta V} \to \infty$$
(2.9)

この処理法については,ある一点でのみ無限大となり,その点を除くいたるところで0となり,かつ全世界で体積積分すると1となるデルタ関数と呼ばれる関数を導入することにより, 解決することができるが,詳細は次節で述べる。

要は,クーロン場は,原点を除くあらゆるところで,divが0,つまり原点以外では発散の ない比較的簡単な場であることが分かる。

2.4 デルタ関数

ある点でだけ無限大となり、その他のあらゆる点で 0 となり、かつ、全世界で体積積分す ると 1 となる関数を、ディラックのデルタ関数 (Dirac δ function) あるいは単にデルタ関数 (delta function) と呼ぶ。

三次元空間での関数を議論する前に、一次元空間でのディラックのデルタ関数(Dirac δ function)を考えてみよう。一次元空間で、まず、図 2.7 に示すように、原点の前後 *a* の領域 内だけ、1/*a* の値を持ち、その外はすべて 0 の不連続関数 f(x) を考えてみる。この関数を *x* で積分して面積を求めてみると、その積分結果は明らかに 1 である。そこで、 $L \to 0$ として みると、原点では $f(0) \to \infty$ となるが、原点を除くあらゆる点で f(x) = 0 である。こうした 極限でしか定義されないものを、関数といってよいかどうかといった問題は残るが、明らかに 所望の性質を持っている。こうした関数 f(x) を $\delta(x)$ と記載する。原点以外の点 x_0 で特異性 を持つデルタ関数を定義するには、 $\delta(x - x_0)$ を使えばよい。

図 2.7 $L \rightarrow 0$ とすると、一次元空間でのデルタ関数が得られる。

ここでは不連続関数を用いたが,例えば連続関数 $2a/[\pi(x^2 + a^2)]$ で, $a \to 0$ としたものも, 同じ性質を持っており, $\delta(x)$ の別の定義となっている。さらにガウス関数(正規分布)なども 利用できる。このような関数を探すのは容易であり,要は積分して有限になり,x軸方向に圧 縮すると,原点付近以外に大きな値を持たないような関数でさえあればよい。積分結果を1に するには,適切な正規化を行うだけでよい。

三次元空間におけるデルタ関数は、半径 a の球の内部で 1/V の値を持ち、外部では 0 とな る関数の極限により定義することができる。ここで、V は球の体積 $4\pi a^3/3$ である。いうま でもなく、この関数の体積積分は 1 である。また $a \rightarrow 0$ により、原点以外は 0 となる。この 三次元空間におけるデルタ関数を $\delta(\mathbf{r})$ と書く。この場合も、連続関数 $a/[\pi(\mathbf{r}^2 + a^2)]^2$ の極 限によっても、定義することもできる。また、原点以外の点 \mathbf{r}_0 に特異性のあるデルタ関数は $\delta(\mathbf{r} - \mathbf{r}_0)$ で定義できることも、一次元の場合と同様である。この三次元空間におけるデルタ 関数を、以後、点状デルタ関数(point delta function)と呼ぼう。

さて前節最後の式 (2.9) に示した div(r/r^3) を見てみよう。まず、この式は原点では無限大 となるが、それ以外のあらゆる点で 0 である。さらに、この式を体積積分としてみると、 4π となることが分かる。

$$\int_{\mathcal{V}} dV \operatorname{div}\left(\frac{\boldsymbol{r}}{r^3}\right) = \int_{\mathcal{S}} d\boldsymbol{S} \cdot \left(\frac{\boldsymbol{r}}{r^3}\right) = 4\pi$$

したがって、次式のように記載できることが分かる。

$$\operatorname{div}\left(\frac{\boldsymbol{r}}{r^3}\right) = 4\pi\delta(\boldsymbol{r}) \tag{2.10}$$

次章に示すように、点状デルタ関数は、点電荷を扱う際に、しばしば用いられる。

線状デルタ関数(line delta function)も定義することができる。これは、円柱のような領 域に対して定義された関数で、長さは一定で断面積だけ縮めることにより得られる。同じく断 面積上で積分すると1になる関数である。円柱の長さを短かめに定義し、これを軸方向に繋ぎ 合せることにより、任意曲線の存在する部分にだけ特異性のある場合を扱うことができるよう
になる。次章で述べるように、線電荷や電流などを扱う際、便利であり、 $\delta_L(\mathbf{r}, \mathbf{l})$ と記載する こととしよう。このデルタ関数は、 \mathbf{r} が $\mathbf{0} \pm \mathbf{l}/2$ の線分内にあるときだけ値を持つ。

面状デルタ関数(surface delta function)も定義することができる。これは、厚さaの板状の領域内だけ 1/aの値をとり、その外部では 0 となる関数を定義し、板の厚さだけ 0 に縮めることにより得られる。この関数も、厚さ方向に積分すると 1 となる。板の面積を小さめに定義し、これをジグソーパズルのように繋ぎ合せることにより、任意曲面の存在する部分にだけ特異性のある場合を扱うことができるようになる。次章で述べるように、面電荷や面電流などを扱う際、便利であり、 $\delta_S(r, S)$ と記載しよう。線状デルタ関数と同様に、rが原点を通過するS面内にあるときだけ値を持つ。

2.5 ベクトル場の回転

ベクトル場の回転(rotation)について述べよう。回転とはベクトルが渦状に並んでいるこ とを指す。地球のような閉曲面に沿って、ベクトル場が面の接線方向に絡み付いて、ちょうど 偏西風のように回っているとすると、このベクトル場は明らかに地軸を軸とする渦上の流れを 構成している。もっと複雑な場合にも、次のような計算をすれば、閉曲面全体で合計した渦の 軸方向と強さを求めることができよう。

閉曲面の上のある面要素を考える。そこで面の法線ベクトルとベクトル場の外積をとると, その方向は回転軸の方向となり,ベクトルの接線方向の強さにもなっている。ちょうど,力の モーメントのようなベクトルとなる。これを面要素の重みを付けて合計すれば,閉曲面全体を とりまく渦の方向と強さになろう。外積があちこちを向いて全体として合計すると 0 になる ときは,渦はなかったというふうに考える。流れの中に中心だけ固定したピンポン玉を入れた ようなもので,渦があればピンポン玉は,その渦にしたがって回転を始めるというアナロジー が,分かりやすいかも知れない。

領域の周辺での回転の程度は次式で計算できる。

$$\oint_{\mathrm{S}} doldsymbol{S} imes oldsymbol{A}$$

これを回転積分(rotation integral)と呼ぼう。この場合,外積が使われているため,もし dSと A の順を入れ替えて記載する場合には,負号を付けねばならない。

例えば、直線上、下から上へ流れる電流の作る磁場は、電流路を取り囲む円周に沿ったベクトル場になる。これを電流路上の一点を中心とする球面上で回転積分をしてみると、図 2.8 に見られるように、どの外積も球面に沿うベクトルになるが、球面から電流が流れ出す点、つまり球の頭頂点を向いている。これを積分すると上向きのベクトルとなる。つまり、回転が存在し、その右ネジの進む方向のベクトルが得られる。

一点の近傍の局所的回転の程度を次のように求めることができる。この量は A の rot

図 2.8 面ベクトルと直線電流の作る磁場ベクトルとの外積は、面内で頭頂点を向く。

(rotation),もしくは単に回転とも呼ばれる。

$$\operatorname{rot} \boldsymbol{A} \equiv \lim_{\Delta V o 0} rac{1}{\Delta V} \oint_{\mathrm{S}} d\boldsymbol{S} imes \boldsymbol{A}$$

領域が小さく,ベクトル場が緩やかに変化している場合には,この式を次の微分により求める ことができる。これを ▽ × A とも記載する。

$$\operatorname{rot} \boldsymbol{A} = \nabla \times \boldsymbol{A} = \boldsymbol{i} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \boldsymbol{j} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \boldsymbol{k} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

 $\nabla \times A$ と同様に、ベクトル演算子 ∇ と A の形式的な外積をとると、微分形が得られるので、 これを $\nabla \times A$ と記すが、 $-A \times \nabla$ と書くことはできない。

発散積分のときと同様に、領域の付近で $A = iA_x + jA_y + kA_z$ をテイラー展開する。 $dS \times A$ を一次の近似の範囲で積分すると、一定値の面積分は0であり、 $x \approx y \approx z$ に比例 する部分はiV, jV, kVになるから、次のようになる。

$$\oint_{S} d\mathbf{S} \times \mathbf{A}$$
$$= V \left[\mathbf{i} \left(\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z} \right) + \mathbf{j} \left(\frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x} \right) + \mathbf{k} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \right) \right] + \mathbf{O}^{2}$$

ただし, *i*, *j*, *k*の外積の計算は実行してある。

発散の場合とまったく同様に,回転の程度を,大きな閉曲面上での回転積分により計算する ことができる。

$$\oint_{\mathrm{S}} d\boldsymbol{S} \times \boldsymbol{A} = \int_{\mathrm{V}} dV \operatorname{rot} \boldsymbol{A}$$

厳密には**ベクトル場のガウスの外積定理**(Gauss outer product theorem of vector field)とで も呼ぶべきものであろうが,以後,簡単に**ガウスの外積定理**(Gauss outer product theorem) と呼ぼう。

例えば、 $\mathbf{\mathcal{D}}$ ーロン場 (Coulomb field) \mathbf{r}/r^3 の場合には、次のようになる。

$$\oint_{S} d\boldsymbol{S} \times \frac{\boldsymbol{r}}{r^{3}} = \boldsymbol{0}$$
(2.11)

まず、クーロン場の rot を計算してみよう。

$$\operatorname{rot} \frac{\boldsymbol{r}}{r^{3}} = \boldsymbol{i} \left[\frac{\partial (zr^{-3})}{\partial y} - \frac{\partial (yr^{-3})}{\partial z} \right] + \boldsymbol{j} \cdots + \boldsymbol{k} \cdots$$
$$= \boldsymbol{i} \left(-3zr^{-4}\frac{y}{r} + 3yr^{-4}\frac{z}{r} \right) + \boldsymbol{j} \cdots + \boldsymbol{k} \cdots = \boldsymbol{0}$$

この式は、少なくとも、被微分関数が ∞ となる原点を除いては、必ず成立する。式 (2.7) に 示したように、任意の閉曲面での発散積分は、原点を囲む球殻上の積分に帰することができ た。その際の条件は、原点以外での div が 0 であることであった。これと同様に、原点以外 での rot が 0 であるので、任意の閉曲面に対する回転積分は、原点を囲む球殻上の積分と等 しくなる。さて球面上での回転積分であるが、 $dS \times A$ は dS と r がいつでも同方向である ため、0 となる。したがって、球殻上の回転積分は明らかに 0 となり、任意の閉曲面での回 転積分も 0 となる。

別例として,直線電流の作る磁場を考えよう。磁場のベクトルは,電流路からの距離を *R* と するとき,電流路を囲む円の円周方向を向き,大きさは比例係数を除いて 1/*R* となる。図 2.8 に示すように,球面上でのこのベクトルの回転積分を実行してみよう。球の半径を *r* とすると 次のようになる。

$$\oint_{\text{πtat$in θ}} dS \, \frac{\sin \theta}{R} = 2\pi L$$

なお,電流路の長さ 2r を L と置いた。このように,右辺はこの体積中に存在する電流路の長 さに比例する。

場のベクトルと *dS* の外積は,図のように,球面に沿って頭頂点の方向を向いている。 二つのベクトルが直交していることから,外積には角度補正は必要としないが,外積ベクト ルの結果の総和を求めるときには,電流路の成分を求めてから和をとる必要がある。

同じ回転積分を,別の手法で計算することもできる。クーロン場の発散積分と同様に,電流路を囲む半径 a の筒状の領域と,その部分を除いた領域の二つの積分の和に置き換えることができる。除いた部分の積分は,このベクトル場の rot が 0 であるので,0 となる。筒状の領域の積分は,表面で外積がすべて同じ値の上向きで dS/a の値を持つベクトルとなることから簡単に計算できる。1/a に筒状の領域の表面積を掛けた大きさ $2\pi(2r) = 2\pi L$ のベクトルとなり,上記の結果と一致する。

2.6 線積分とストークスの定理

いままでは面積分について述べて来たが,線積分についても同様な議論が可能である。以下 のように,ほとんどの議論が面積分と同じように進行する。まず,線積分とは次のような概念 である。図 2.9 のように,ある閉曲線に沿って回ることを考える。その上を微小な区間で分 割する。その微小区間の長さを大きさとし,回る方向と同じ向きを向いたベクトルを *dr* で表 す。これに適当な重み,例えば場所で値が決まる関数のような重みを付け,合計したものが線 積分である。実際に,重みを一定にして線積分を行うと,その結果は閉曲線の形状によらずに 0 となる。

図 2.9 閉曲線に沿って線積分を行う。

この証明も面積分のときと同じようにすることができる。まず、この結果があるベクト ル a になったとしよう。両辺に a 方向の単位ベクトル n をスカラー的に掛ける。まず、右 辺は a となる。一方、左辺の $n \cdot dr$ は dr を n に平行なある直線に射影した大きさになる。 閉曲線状で位置が移動していくと、射影された点はこの直線上を一往復することになる。つ まり二重に射影されるが、片方の射影結果は正になるのに対し、もう片方の射影結果は負と なり、結果として全合計結果は0となる。つまり右辺は0となる。

もう一つ今後の議論のために重要な線積分がある。*x* を重みとした線積分であるが,これを 考える場合は,ほとんど平面と見なせるような微小な領域Sを囲んだ閉曲線とする。結果は閉 曲線の形状によらず,閉曲線の囲む領域の面積のベクトルを微小ということで,*dS*と記載す るとき,以下のように与えられる。

$$\oint_{\mathbf{C}} d\boldsymbol{r} \, x = d\boldsymbol{S} \times \boldsymbol{i}$$

いうまでもなく y や z の重みについても同様の結果が得られる。

図 2.10 閉曲線に囲まれた領域を x 軸に沿って千切りにする。

これを証明するには、まず、閉曲線に囲まれた領域を、図 2.10 のように yz 面と垂直な 多数の面で小片に分割する。

$$\oint_{\mathcal{C}} d\mathbf{r} \, x = \sum_{i=1}^{n} \int_{\mathcal{C}_i} d\mathbf{r} \, x_i = \sum_{i=1}^{n} x_i \int_{\mathcal{C}_i} d\mathbf{r}$$

各小片ごとの線積分 $\int d\mathbf{r}$ は、対応する二つの積分要素の和とする。この値を求めるのであるが、各細い小片を囲む線積分全体を求めると、最初に述べたように $\mathbf{0}$ となるはずである。

$$\int_{\mathcal{C}_i} d\boldsymbol{r}_i + \boldsymbol{n} L_{i+1} - \boldsymbol{n} L_i = \boldsymbol{0}$$

ここで、 L_i は i番目の小片の左側の切片の長さである。また nは右側の切片の向く方向の単位ベクトル、つまり $dS \times i$ 方向の単位ベクトルである。この関係を使い、各線積分を切片長の差に置き換えることができる。さらに変形すると証明が完了する。

$$\oint_{C} d\mathbf{r} \, x = \sum_{i=1}^{n} x_{i} \, \mathbf{n} \, (L_{i} - L_{i+1}) = \mathbf{n} \left(\sum_{i=0}^{n-1} x_{i+1} \, L_{i+1} - \sum_{i=1}^{n} x_{i} \, L_{i+1} \right)$$
$$= \mathbf{n} \sum_{i=1}^{n-1} (x_{i+1} - x_{i}) \, L_{i+1} = \mathbf{n} \, dS = d\mathbf{S} \times \mathbf{i}$$

これらを利用すると,この微小領域で僅かに変動しているスカラー場に対して,次式が成立 することが証明できる。

$$\oint_{\mathcal{C}} d\boldsymbol{r} \, \phi = d\boldsymbol{S} \times \operatorname{grad} \phi$$

証明は、次式を代入することで、容易にできる。

$$\phi = \phi_0 + \frac{\partial \phi}{\partial x} \left(x - x_0 \right) + \frac{\partial \phi}{\partial y} \left(y - y_0 \right) + \frac{\partial \phi}{\partial z} \left(z - z_0 \right) + O^2$$

さらに以上の結果を利用して大きな曲面状の領域を囲む閉曲線に対して,次の式を誘導する ことができる。

$$\oint_{\mathbf{C}} d\boldsymbol{r} \, \phi = \int_{\mathbf{S}} d\boldsymbol{S} \times \operatorname{grad} \phi$$

この式をスカラー場のストークスの定理(Stokes theorem of scalar field)と呼ぼう。以下, 線積分と面積分を結び付ける式は,一般にストークスの定理(Stokes theorem)と呼ばれて いる。

例えば、 $\phi = 1$ とすると、次式が得られる。

$$\oint_{\mathbf{C}} d\boldsymbol{r} = \boldsymbol{0}$$

図 2.11 閉曲線で囲まれた領域を分割する。

この式の誘導にあたって,まず大きな曲面を,図 2.11 に見られるように小さな領域に 分割する。各領域では上の関係が成立するが,これを寄せ集めると,左辺の合計で,隣接す る小領域の間の線積分は互いに打ち消し合うから,結局,縁の閉曲線の積分だけが生き残る。 一方右辺は,面積分になるので,上式が成立することとなる。

同様に線積分要素とベクトル場の内積から、次の式が導かれる。

$$\oint_{\mathcal{C}} d\boldsymbol{r} \cdot \boldsymbol{A} = d\boldsymbol{S} \cdot \operatorname{rot} \boldsymbol{A}$$

これを大きな曲面を囲む閉曲線に拡張すると、次の式が誘導される。

$$\oint_{\mathbf{C}} d\boldsymbol{r} \cdot \boldsymbol{A} = \int_{\mathbf{S}} d\boldsymbol{S} \cdot \operatorname{rot} \boldsymbol{A}$$

この関係はベクトル場のストークスの内積定理(Stokes inner product theorem of vector field)と呼ぼう。いくつかのストークスの定理で、これがもっともよく知られているため、以後、単にストークスの定理(Stokes theorem)といえば、これを指すものとする。

図 2.12 閉曲線を二つの積分路に分割する。

この内積線積分の定理は、回転の程度を線積分でも表現できることを示している。地球の赤 道のような閉曲線を考えよう。この閉曲線に沿って、ベクトル場がちょうど偏西風のように 回っているとすると、このベクトル場をはるかかなたから見ると、明らかに西から東への渦状 の流れを構成している。もっと複雑な場合にも、次のような計算をすれば、閉曲線全体で合計 した渦の強さを求めることができよう。まず閉曲線に右回転か左回転かの向きを決める。次に その上のある微小線要素を考えよう。そこで線要素の接線ベクトルとベクトル場の内積をとる と、その値が正ならば閉曲線方向の回転に寄与し、負ならば逆方向の回転に寄与することが分 かる。したがって、これに線要素の長さの重みを付けて合計すれば、閉曲線に沿った渦の強さ が得られる。不幸にして内積があちこちを向いて全体として合計すると0になるときは、渦は なかったというふうに考える。

このストークスの定理は、ポテンシャルという概念とも深く関わっている。任意の点 O を 原点として、そこから別の任意の点 P まで、力 A を線積分していった値が経路に寄らず一定 になるとき、その積分結果の符号反転したものをポテンシャル(potential)という。また、こ のような力を A を保存力(conservative force)、ポテンシャルを保存場(conservative field) という。

$$\phi(\mathbf{P}) = -\int_{\mathbf{O}}^{\mathbf{P}} d\boldsymbol{r} \cdot \boldsymbol{A}$$

このようなときに、図 2.12 に示すように、点 O から点 P までの経路を C₁、別の経路を C_2 として、点 O → C₁ →点 A → C₂ →点 O なるループ状の経路を C とすると、次の式が得られる。

$$\oint_{\mathbf{C}} d\mathbf{r} \cdot \mathbf{A} = \int_{\mathbf{C}_1} d\mathbf{r} \cdot \mathbf{A} + \int_{\mathbf{C}_2} d\mathbf{r} \cdot \mathbf{A} = -\phi(\mathbf{P}) + \phi(\mathbf{P}) = 0$$

ここで, C₂ に沿う点 P から点 O までの線積分を,逆向きの C₂ に沿う点 O から点 P までの線積分に置き換える際,符号が反転することを利用している。この結果から,どのような閉曲線に沿って回転積分しても,その結果が 0 のとき,そのベクトルは保存的であるといえる。

φ(P) が原点からの積分経路によらず,一義的に与えられるということは,任意の点のポテ ンシャルが一義に決定されることを示している。また次式が成立する。

$$A = -\operatorname{grad} \phi$$

この証明は、点 P の座標を r_0 として、その近傍のポテンシャルを ϕ のテーラー展開を 利用して表すと、次のように書けるはずである。

$$\phi(\boldsymbol{r}) = \phi(\boldsymbol{r}_0) + d\boldsymbol{r} \cdot \operatorname{grad} \phi$$

一方,次式が成立する。

$$\phi(\boldsymbol{r}) - \phi(\boldsymbol{r}_0) = -\int_{\boldsymbol{r}_0}^{\boldsymbol{r}} d\boldsymbol{r} \cdot \boldsymbol{A} = -d\boldsymbol{r} \cdot \boldsymbol{A}$$

これらを比較することにより、証明が完了する。

つまり、ポテンシャル ϕ が与えられていると、それから力 A を求めることもできる。ここで、ストークスの定理と**勾配**(gradient)の概念が繋がりを持つことが理解できよう。ちなみに、勾配の節でも述べたように、 r/r^3 で与えられるクーロン場は保存力であり、そのポテンシャルは 1/r となる。

電流の作る磁場の渦は、回転場であるので、内積線積分は0とならない。電流路と鎖交する どんな閉曲線に対しても、いつも一定の内積線積分結果を与えるというのが、アンペールの法 則(Ampere law)である。

さらに線積分要素とベクトル場の外積から、次の式が導かれる。

$$\oint_{\mathcal{C}} d\boldsymbol{r} \times \boldsymbol{A} = -(d\boldsymbol{S} \times \nabla) \times \boldsymbol{A} = \operatorname{grad}(d\boldsymbol{S} \cdot \boldsymbol{A}) - d\boldsymbol{S} (\operatorname{div} \boldsymbol{A})$$
(2.12)

第二式は,例のごとくベクトル演算子 ▽ を単純なベクトルのように見なし,形式的に外積 を二回とった形となることを示している。ただし,演算子なので,順番を変えてはいけない。 最後の式は,第二式のすべての項を成分ごとに分解し,それを再合成すると得られる。これを 大きな曲面を囲む閉曲線に拡張すると,次式が得られる。

$$\oint_{\mathcal{C}} d\boldsymbol{r} \times \boldsymbol{A} = -\int_{\mathcal{S}} (d\boldsymbol{S} \times \nabla) \times \boldsymbol{A} = \int_{\mathcal{S}} \left[\operatorname{grad}(d\boldsymbol{S} \cdot \boldsymbol{A}) - d\boldsymbol{S} \left(\operatorname{div} \boldsymbol{A} \right) \right]$$

この式はベクトル場のストークスの外積定理(Stokes outer product theorem of vector field) とでも呼ぶべきものであるが,以後は単にストークスの外積定理(Stokes outer product theorem) といおう。

2.7 発散も回転もある場

物質が絡む電磁気学で登場するのが,発散も回転もあるベクトル場である。力の場ではなく,分極,磁化といった現象を表すのに使われる。図 2.13 に示すように,ある領域だけ,一

図 2.13 発散も回転もある場の断面図。(a) 円柱, (b) 球。

定のベクトル場があり,その外部は0となっているものを考える。どんな形状でもよいが,一 例として,(a)の円柱と(b)の球を扱ってみよう。

この一定のベクトルを A としておこう。いずれの場合も、場のベクトルが発生する下端の ほうで、正の発散があり、消失する上端のほうで、負の発散があることは明白であろう。しか もそれら発散は、ベクトル場が突然なくなることから、それらの点での div は無限大となる。 端の付近を、面に平行に置かれた小さな板状の領域で覆って、発散積分を計算してみると、div は面状デルタ関数であり、(a) では面密度 A, (b) では面密度 A cos θ (θ は極座標の頭頂角) となることが理解できよう。

この場は,やっかいなことに回転も存在する。側面付近を小さな板状の領域で囲って,その 上で回転積分を実行してみると, rot は, *A* と平行な中心軸を右ネジの進む方向とするネジの 回転方向を向いたベクトルであり,かつ,面状デルタ関数であり,(a)では面密度 *A*,(b)で は面密度 *A* sin θ となることが理解できよう。

第3章

電磁場の基本方程式

前章で述べたベクトル場の性質を使って, 電場や磁場ベクトル場の性質について議論しよう。

3.1 静電場の性質

電場は,**クーロンの法則**(Coulomb law)に従い,電荷 *Q* が原点にある場合,距離の二乗 に反比例し,原点から発散する方向を持つベクトル場である。^{*1}

$$\boldsymbol{E} = \frac{Q}{4\pi\varepsilon_0} \frac{\boldsymbol{r}}{r^3}$$

ここで、 ε_0 は電気定数 (electric constant) であり、 $1/(4\pi \times 9 \times 10^9) = 8.85 \times 10^{-12}$ F/m である。

電場の特長は,発散はあるが回転のないことである。まず,任意の形状の閉曲面の上で,点 電荷が原点に一つだけある場合の発散積分を計算してみよう。

$$\oint_{\mathrm{S}} d\boldsymbol{S} \cdot \boldsymbol{E} = \frac{Q}{4\pi\varepsilon_0} \oint_{\mathrm{S}} d\boldsymbol{S} \cdot \frac{\boldsymbol{r}}{r^3}$$

前章の式 (2.5) より,右辺の積分は,閉曲面が電荷を囲めば 4π となるから,ガウスの法則 (Gauss law)と呼ばれる次式が成立する。前章で示した面積分と体積積分を結ぶ数学の恒等 式群のことも似た呼び方をするが,電磁気学では,クーロンの法則から誘導されたこの式のこ とをそう呼ぶ。

$$\oint_{\rm S} d\boldsymbol{S} \cdot \boldsymbol{E} = \frac{Q}{\varepsilon_0}$$

^{*1} 電荷が光速に対し無視できない速度で運動している場合には,この式から少しずれてくる。ただし,以後のガ ウスの法則などは変らない。詳細については第 10 章の式 (10.11) を参考にされたい。

一方,閉曲面が点電荷を囲んでいないときには,式(2.6)より0となることが導かれる。

閉曲面内にいくつか電荷があるときには、電場はそれぞれの電荷の作る電場のベクトル加算の結果となるから、発散積分の結果も、個々の電荷の発散積分の総和となる。結果的に、上式の右辺の *Q* として閉曲面内の総電荷を考えればよいこととなる。電荷が点電荷の集合ではなく、空間に拡がって分布するときには、電荷密度(charge density)ρ を用いて次式のように表すことができる。

$$\oint_{S} d\boldsymbol{S} \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \int_{V} dV \,\rho \tag{3.1}$$

この左辺は、ガウスの定理 $\oint_{S} dS \cdot E = \int_{V} \operatorname{div} E$ により div E の体積積分になる。右辺も体積 積分であるから、積分記号を外すと、ガウスの法則の微分形(differentail form of Gauss law) と呼ばれる次式が得られる。

$$\operatorname{div} \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho$$

積分記号をいきなりはずすのは乱暴かもしれない。厳密には, div *E* や ρ がほぼ一定に 見えるまで積分領域を十分小さくして,左右の体積積分を体積との積にしてしまう。この両 辺を体積で割れば,上式が得られる。

この表現で点電荷がある場合は,第2章の式 (2.10) にしたがって,前章 2.4 節で述べた点状 デルタ関数を使って表すことができる。まず,点電荷の代わりに,半径 a 程度拡がった電荷分 布の作る電場を考え,その div を計算してみよう。例えば,半径 a の球内で, $\Delta V = 4\pi a^3/3$ とするとき,一定の電荷密度 $\rho = Q/\Delta V$ を持って拡がっている電荷を考える。いうまでもな いことであるが, $a \to 0$ で, $\rho = Q \delta(\mathbf{r})$ となる。

$$\rho = \begin{cases} \frac{Q}{\Delta V} & \text{(inside sphere)} \\ 0 & \text{(outside sphere)} \end{cases}$$

対称性から考え、電場の方向は電荷分布の中心から放射状で、かつ中心対称となる。球内で は、半径 r 内に存在する総電荷は $Q(r/a)^3$ となるので、ガウスの定理より、電場の大きさは、 これを表面積の ε_0 倍である $4\pi\varepsilon_0r^2$ で割った値となる。また、球外では、総電荷が Q と一定 になることだけが異なる。この結果、得られる電場は次式で与えられる。

$$\boldsymbol{E} = \frac{Q}{4\pi\varepsilon_0} \begin{cases} \frac{\boldsymbol{r}}{a^3} & \text{(inside sphere)} \\ \\ \frac{\boldsymbol{r}}{r^3} & \text{(outside sphere)} \end{cases}$$

図 3.1 特異性を緩めた電場と電荷密度 (a = 1)。

ここに得られた電場と電荷分布を図 **3.1** に示すが、この電場は連続であるため、まったく問題なく微分することができ、div は簡単に計算でき、その結果は再び ρ/ε_0 になる。

さて、電場の右辺は、 $a \to 0$ で球内の領域がなくなるため、通常の点電荷の作る電場となる。一方、div $E = \rho/\varepsilon_0$ となるため、極限で、右辺はデルタ関数となり、次のように表すことができる。

div
$$\boldsymbol{E} = \frac{Q}{\varepsilon_0} \,\delta(\boldsymbol{r})$$

このようにクーロン場は,電荷の存在するところを除くあらゆるところで,divが0,つまり 発散のない場であることが分かる。この式は,前章 2.4 節式 (2.10) からも,ただちに求めるこ とができる。

原点以外の \mathbf{r}' に電荷がある場合には、 $\delta(\mathbf{r})$ のところを、 $\delta(\mathbf{r} - \mathbf{r}')$ に置き換えるだけでよ い。点電荷がたくさんある場合には、この右辺の点電荷の値 Q と位置 \mathbf{r}' を変えたものを合計 すればよい。このように、電場の源である電荷の存在しているところだけが特異になる。

次に、一つの電荷が作る電場の回転積分を計算してみよう。

$$\oint_{\rm S} d\boldsymbol{S} \times \boldsymbol{E} = \frac{Q}{4\pi\varepsilon_0} \oint_{\rm S} d\boldsymbol{S} \times \frac{\boldsymbol{r}}{r^3}$$

この右辺の積分は式 (2.11) より, 閉曲面が電荷を囲むか否かに関わらず, 0 となる。

電荷がたくさんあっても、また電荷が空間に分布して存在していても、次の式が成立する。

$$\oint_{S} d\boldsymbol{S} \times \boldsymbol{E} = \boldsymbol{0} \tag{3.2}$$

左辺はガウスの外積定理により rot *E* の体積積分になる。したがって,積分記号を外すと,い たるところで,次式が成立することが示される。

$\operatorname{rot} E = 0$

このように,電場はいたるところ回転の存在しない場である。発散についても,div *E* は電荷がない限り0であり,きわめて素直な場である。電荷を囲む任意の閉曲面で発散積分が存在するのは,電荷のあるところだけの発散が,外部からも観測されるに過ぎない。

素直な場とは,どんなイメージだろうかというと,水の流れがよい対応を与える。圧縮もさ れず,粘性もない流れは div も rot も 0 である。水は,壁のすぐ傍を除けば,おおむね,この 条件を満たすので,水の流れの流線を想像してもらえればよい。つまり,正電荷から湧き出し て,負電荷に吸い込まれる流れが,よいイメージを与える。もちろん,正負の電荷が全体とし て相殺しないときには,均一に無限遠に流れ出ていったり,無限遠から流れ込んできたりする。

なお,各点でベクトル場に沿うように引いた曲線を**指力線**(line of force),電場の場合に は,特に**電気力線**(line of electric force)という。原理的には無数の曲線が引けることになる が,通常はその密度がベクトル場の強さに比例するように間引いて引く。div のないところで は,指力線を連続的な曲線として引くことにより,あらゆる点で,その密度がベクトル場の強 さに比例するようにすることができる。

指力線に沿った任意断面形状の管を考えよう。これにガウスの定理を適用すると,積分 結果が0の場合,管の断面積とベクトル場の強さの積は一定となることが,簡単に証明でき る。これより,指力線の密度はベクトル場の強さと比例することが分かる。

この結果,電気力線を見ることにより,それが発生するところが正電荷で,消滅するところ が負電荷であることが理解できよう。

3.2 静磁場の性質

続いて静磁場の性質を導こう。電場は点電荷の作る場を基に,きれいな理論体系を構築でき たが,磁場の場合には何をもとにしたらよいのだろう。磁場源としてよく用いられるものは, 磁荷(magnetic charge),電流素片(current element),微小電流ループ(micro current loop)の三種類である。多くの電磁気学の書では電流素片の作る磁場をビオ・サバールの法則 といって頭ごなしに与え,それといくつかの簡単な形の電流が作る磁場を比較し,正当性を主 張する。ただし,私個人は電流素片という形状が仮想的であり,それが故に実験で確認できな い手法は嫌いであるため,次の方法にしたがって,微小電流ループの作る磁場を予測する。

歴史的にもっとも古くから使われてきた磁場源は磁荷である。磁荷は電荷と同じように**クー ロンの法則**(Coulomb law)にしたがう磁場を発生する。以後、このクーロン場を発生するモ デルを、磁荷モデル(magnetic charge model)と呼ぼう。不思議なのは、磁荷が単独で観測 されることがなく、必ず正負対、つまり Q_m があれば等量の $-Q_m$ が存在することである。正 極を N 極、負極を S 極とも呼ぶ。両極が必ず対になることさえ気にしなければ、理想的な磁

図 3.2 断面積 A のソレノイドの作る磁場。

石の片側の磁極(magnetic pole)の作る磁場は、磁極から放射状のクーロン場で与えられ、静 電場と同様の形で与えられる。

$$\boldsymbol{B} = \frac{Q_m}{4\pi} \frac{\boldsymbol{r}}{r^3} \tag{3.3}$$

次に電流の作る磁場を考えよう。ここで基礎とするのは,図 3.2 に示すように,空芯の空間 がリング状の境界に囲われており,そのリングに,空芯部分を囲むように一定の電流密度の電 流が流れている電磁石である。この形状の構造をソレノイド (solenoid) とよぶ。リングの形 は図に示したような四角っぽいものでも,円でも,ある面積を囲める平面形状ならばなんでも 良いのであるが,それがソレノイドの長さ一杯に続くことが重要である。

この形状の電磁石の場合,次の三種類の磁場が発生する。一つはソレノイド空芯部分に,電流と右ネジの方に発生する一定な磁場 **B**_{in} であり,その強さは次式で与えられる。

$$B_{in} = \mu_0 K$$

ここで *K* は表面電流密度,つまり単位長当りの電流である。ある面積を通過する磁場の総量を磁束(magnetic flux)と呼ぶが,この場合リングで囲まれた断面積 *A* を通過する磁束は次式のようになる。

$$\Phi_{in} = B_{in}S = \mu_0 KA$$

第2,第3の磁場はソレノイドの両端が作る磁場である。まずソレノイドの上端(内部磁束 の先端側)に Φ_{in} と密接に関係する Q_m なる磁荷が発生する。

$$Q_m = \Phi_{in} = B_{in}A = \mu_0 KA$$

その N 極が作るクーロン型の磁場 *B_m* は (3.3) で与えられる。より詳細を述べると,この *Q_m* は先端のリング内に一様に分布しており,ちょうど内部磁場が先端で全空間に湧き出している

3.2 静磁場の性質

ソレノイド中の $m{B}_{in}$

上端で Q_m の作る磁場 B_m

両者の合計 B

図 3.3 不連続な磁場 B_{in} に、右上図の磁荷 Q_m (S にわたって一様に拡がっている)の作 る不連続な磁場 B_m を加えると、下の連続な磁場 B になる。

ような形となっている。同様にソレノイドの下端(内部磁束の終端側)には –*Q_m* なる S 極が 発生し,同じくクーロン型の磁場 –*B_m* を作るが,ちょうど先端が作った磁束を回収するよう な形となる。

ちなみに,後に得られる式を使って先端での磁場の様子の詳細を計算した結果を図 3.3 に示 すが,上述のことが理解できよう。なおこの図は,断面が円形ソレノイドの場合であり,終端 は十分に離れていてその影響は無視できるような場合を描画している。

これらの3種類の磁場は,種々のリング形状や長さのソレノイドについて測定することにより,容易に分離することができる。

図 3.4 微小ソレノイドと閉曲面 S の交差。dS は S の一部。

3.2.1 ソレノイドの作る場の性質

ソレノイドの発散積分は常に0である。それはソレノイド周辺の磁束が常に連続であるか らである。つまり,任意の閉曲面から出ていく磁束と入ってくる磁束が常に等しくなることか ら,**B**の発散積分の値は0となり,次式が成立する。

$$\oint_{\rm S} d\boldsymbol{S} \cdot \boldsymbol{B} = 0$$

続いて,任意のソレノイドが作る磁場の回転積分を求めよう。まず両端の ±Q_m が作る場で あるが,これらはクーロン場であり,静電場の場合,クーロン場の回転積分は0になることを 示したので,これは対象外となる。

やや短かめのソレノイドを図 3.4 に示す。上下両端の磁荷から発生する場はいずれもクー ロン場であり,静電場での考察からその回転積分は図 3.2 に見られるように 0 である。ただ し,将来,この短いソレノイドを大きな積分の最小区分に利用しようということで,この区分 については積分記号を付けないで計算することとする。

 B_{in} の回転積分であるが、これが回転積分に寄与するのは、いうまでもなく、閉曲面 S がこのソレノイドと絡む場合のみである。閉曲面とソレノイドの交差領域の S の面積を dS とし、ソレノイドの上下方向の長さを h、dS と B_{in} の間の角度を θ 、交差領域と電流ループの交線のベクトルを dl とすると、回転積分は次のように計算できる。

$$d\mathbf{S} \times \mathbf{B}_{in} = dS(\mu_0 K) \left(-\sin\theta \frac{d\mathbf{l}}{dl} \right) = \frac{h \, dl}{\sin\theta} \, \mu_0 K \sin\theta \, \frac{d\mathbf{l}}{dl} = h \mu_0 K \, d\mathbf{l} = \mu_0 I \, d\mathbf{l} \quad (3.4)$$

なお, dl は S 内の電流路とは方向が反対となっていることに注意してほしい。

図 3.5 電流ループを厚さの薄い微小ソレノイドで分割する。*dl* の書かれた濃いハッチの 四角形が図 **3.4** のソレノイドに対応する。

3.2.2 電流ループ全体の作る場の性質

電流ループの囲む領域を図 3.5 のように高さがほとんど無視できる小さなソレノイドで分割する。各素片は,前述のように発散のない磁場しか作らないから,発散積分はいかなる場合でも0となる。

$$\oint_{S} d\boldsymbol{S} \cdot \boldsymbol{B} = 0 \tag{3.5}$$

この式の左辺は div **B** の体積積分となっているので,体積積分記号を外すとただちに次式が得 られる。

$\operatorname{div} \boldsymbol{B} = 0$

このように,磁場は,電場とは逆に,いたるところ発散の存在しない場である。つまり,磁力 線が連続となることを示している。これが,電荷の作る電場ともっとも異なる点である。

続いて回転積分であるが,図 **3.5** に示すように,小さいソレノイドのうち,Sと絡むソレノ イドだけが $\oint dS \times B_{in}$ の積分に寄与する。その結果は (3.4) の右辺より, $\mu_0 I \int dl$ である。 この積分は始点と終点が等しい $\mu_0 I \int_{C \text{ in } S} dr$ に置き換えることができる。つまり,電流ルー プ全体では,次式のようになる。

$$\oint_{\mathbf{S}} d\mathbf{S} \times \mathbf{B} = \mu_0 I \int_{\mathbf{C} \text{ in } \mathbf{S}} d\mathbf{r}$$

つまり,磁場の回転積分は,電流のうち,閉曲面に囲まれた部分を方向も含めて合計したもの で与えられる。これを**アンペールの面積分法則**(Ampere surface integral law)と呼ぶ。重ね て述べるが,磁場の回転積分は,積分を行う閉曲面と電流路が交差するときだけ**0**でない値を 持つが,電流路全体が閉曲面内に入っている場合や,全部が閉曲面外に存在する場合は**0**と なる。 ここで,一般の電流分布の代表を何故ループにしたのかという疑問に答えておこう。そ れは電流は常に連続でなければならないからである。どんな電流も必ずぐるっと回って,元 の地点に戻ってくるからである。直線電流はそうなっていないではないかという反論がある かも知れないが,直線電流は理論上の存在であって,実際に実験しようとすると,巨大な戻 り線を十分遠方に配置することで実現するしかないのである。

前出の式の右辺は,閉曲面内の電流のベクトルとしての総和になっているが,電流が分布して流れている場合には電流密度 **J**の体積積分となる。

$$\oint_{S} d\boldsymbol{S} \times \boldsymbol{B} = \mu_0 \int_{V} dV \, \boldsymbol{J} \tag{3.6}$$

また, 左辺は rot **B** の体積積分になっている。したがって, 体積積分記号を外すとただちに, アンペールの法則の微分形(differential form of Ampere law)と呼ばれる次式が得られる。

$$\operatorname{rot} \boldsymbol{B} = \mu_0 \, \boldsymbol{J} \tag{3.7}$$

この式から一つ重要な法則を導き出すことができる。両辺の div をとると,任意のベクトル場の div rot は 0 になることから,次式が導かれる。

$\operatorname{div} \boldsymbol{J} = 0$

電流密度ベクトルの div が常に 0 ということは,電流が連続であるということを示している。 これを,電流連続の法則(current continuity law)という。

電流が分散して流れていないで、線電流(曲線であってもよい)として流れている場合を考 えよう。式 (3.7) より明らかなように、電流のないところでは rot B = 0 である。電流のある ところでは、式 (3.7) を微小体積 ΔV に適用し、両辺を ΔV で除して $\Delta V \rightarrow 0$ とすればよい。 この結果、左辺は rot B となる。ところが右辺は、この体積を横切る電流の長さを $\Delta r'$ とし て、 $\mu_0 I \Delta r' / \Delta V$ の極限となる。その点での電流の方向を向くベクトルになるが、その大きさ は点電荷の場合のような点状デルタ関数とはならない。詳細の誘導は省くが、 $\Delta r'$ に垂直な方 向にだけ大きな変動をする線状デルタ関数となっており、その平面内で積分すれば1となる。 ただし、以後、あまり使わないので、この説明に止める。

大事なことは、線電流の存在しているところだけが特異であり、その他の部分では、静電場 と同じように、div も rot も 0 な素直な場であるということである。この場合も、ほぼ水の流 れのようであるが、湧き出しも吸い込みもない流れである。その代わりに、線電流の場所が、 水であれば**渦糸**(vortex filament)と呼ばれる渦の中心となった流れを構成する。水の渦糸 は、多くの場合、きわめて細い空洞になっており、その空洞に近いほど、水は高速で流れてい る。ただし、水の場合には、渦が弱くなってくると、この空洞が崩れてくる。これは、水は理 想的な非圧縮、非粘性な流体でないことから生じている。電磁気学では、この空洞の部分が線 電流に置き換わっており,しかも,それが崩れて,独立した渦となって存在するようなことは ない。

3.2.3 アンペールの線積分法則

回転の伝統的な表現であるアンペールの線積分法則を,微小電流ループに対して求めてみよう。これも,微小電流ループの優位さを示すことになるのだが,微小電流ループが閉曲線に絡んでいるときだけ,内積線積分に寄与がある。まず,前章で述べたように,微小電流ループの両極の磁荷が発生するクーロン場の線積分は0である。したがって,磁石内部の一様な補正磁場だけが議論の対象となる。つまり,微小電流ループが閉曲線と絡まないときには,積分に寄与しない。

ここでも,微小電流ループは十分薄いとし,両磁極が閉曲線と交わる場合だけを検討する。 ここでは議論を省略するが,仮に電流路の一部だけが交わる場合も結果は同じになる。まず クーロン場は回転がないので,線積分には効いてこない。このため,磁極間の一様磁場の積分 だけを行えばよい。また微小電流ループは十分小さいので,積分路はほとんど直線に見えると して,計算を行う。

$$d\boldsymbol{r} \cdot \boldsymbol{B} = \frac{t}{\sin \theta} \, \mu_0 K \sin \theta = \mu_0 I$$

大きな電流ループの場合も、それを構成している微小磁石のうち、閉曲線と交差しているものだけが線積分に寄与するので、*I*は閉曲線を通過する全電流として、上と同じ結果が得られる。これがアンペールの線積分法則(Ampere line integral law)である。

$$\oint_{\mathcal{C}} d\boldsymbol{r} \cdot \boldsymbol{B} = \mu_0 I$$

同じ法則を別の方法で求めることもできる。式 (3.7) で表されるアンペールの法則の微分形 を,任意の閉曲線 C で囲まれた曲面上 S で,内積の面積分をしてみよう。

$$\int_{\mathrm{S}} d\boldsymbol{S} \cdot \operatorname{rot} \boldsymbol{B} = \mu_0 \int_{\mathrm{S}} d\boldsymbol{S} \cdot \boldsymbol{J}$$

左辺は,ストークスの定理により,**B**の閉曲線上の線積分に置き換えることができ,同じアン ペールの線積分法則が得られる。

$$\oint_{\mathcal{C}} d\boldsymbol{r} \cdot \boldsymbol{B} = \mu_0 \int_{\mathcal{S}} d\boldsymbol{S} \cdot \boldsymbol{J}$$
(3.8)

アンペールの面積分法則もアンペールの線積分法則も,単にアンペールの法則(Ampere law)と呼ぶが,多くの書では特に後者を指すことが多い。本書でも,単にアンペールの法則

といった場合は,この式 (3.8) を指すこととする。なお,閉曲線で囲まれた面を通過する電流 をしばしば,閉曲線に**鎖交** (cross-link) する電流と呼ぶ。また,逆に,電流ループを通過する 磁束も鎖交すると呼ぶ。コイルのように,何回も巻線があると,鎖交は巻数倍になるので,注 意してほしい。

教育法

ややしつこくなるが,本稿の目的の一つは,磁場の導入教育を変更できないかというこ とにもあるので,私の提案している教育法をまとめておこう。

- 1. 電流と磁場の関係の基本を、ビオ・サバールの法則にするよりも、磁極のクーロンの 法則にしたほうが分かりやすい。ただし、磁石とソレノイドの等価性を利用し、磁石 の内部に一様磁場があることを、きちんと教える。
- 2. こうすると, 磁場の面積分は常に0となることがすぐに誘導でき, 磁場の発散が0で あることが示される。
- 回転に関しては、外積面積分でも、線積分でも、クーロン場は寄与せず、一様磁場の 部分だけを計算すればよいので、簡単に計算できる。著者は、rot との対応がよく、電 場のガウスの定理との相似性が高い外積面積分のほうを、最初に教えるべきと思って いる。

脾の場合の指力線を,特に磁力線(line of magnetic force)という。磁力線は div が 0 で あるため,発生も消滅もなく,全領域で連続であるが,渦糸の位置との関連は薄い。渦糸との 関係が深いのは,指力線に直交する面である。これには特に名前が付けられていないが,本書 では,力垂直面(perpendicular surface to force)と呼ぼう。電気力線の場合には,等ポテン シャル面(equi-potential surface)と呼ばれる。磁場の場合には,スカラー的なポテンシャル が定義できないので,等ポテンシャル面なるものはないので,まさに指力線に直交する力垂直 面となる。

指力線に垂直な面も,原理的には無数に作成することができるが,通常はその間隔が,ベク トル場の強さに反比例するように間引いて記載する。rot のないところでは,力垂直面を連続 的な曲面として並べることにより,あらゆる点で,その間隔がベクトル場の強さに反比例する ようにすることができる。

二枚の力垂直面を二本の指力線で結び,この指力線と二つの面を通る任意の閉曲線を考 える。これにアンペールの線積分の定理を適用すると,積分結果が0の場合,面の間隔とベ クトル場の強さの積は一定となることが,簡単に証明できる。これより,力垂直面の密度は ベクトル場の強さと比例することが分かる。

この結果,力垂直面を見ることにより,それが集中するところに渦糸が存在することが理解 できよう。

3.2.4 ビオ・サバールの法則

さて、電流路は複雑な形があり得るので、その取り扱いにはかなりの困難を生じる。そこで 考え出されたのが**電流素片**(current element)*Idr*という概念である。これは電流の方向を 含む短い電流路がどんな磁場を作るのかという一種の仮説である。これを**ビオ・サバールの法** 則(Biot-Savart law)と呼ぶ^{*2}。

$$\boldsymbol{B} = \frac{\mu_0 I}{4\pi} \, d\boldsymbol{r} \times \frac{\boldsymbol{r}}{r^3} \tag{3.9}$$

この仮説は,直線電流路が電流路を軸とした回転的な磁場を作るという事実と,静電場が距 離の二乗に反比例する法則から類推したものであるが,これを実在の電流路に適応すると,あ らゆる場合に,観測される磁場を正確に記述できることから,正しいことが予測された。さら に,この式から磁場の持つ種々の性質を誘導でき,その結果から,この法則の正当性が確実に 保証されるようになった。しかし,もともと電流素片なるものは単独では存在せず,実験と の直接対比が困難であり,どうしても静電場のような明解な説明が困難であるという難点が ある。

実は、電流素片の先端から等方的に無限遠に向って電流が湧き出し、終端は無限遠から 等方的に電流を吸い込んでいるような形にすると、その全体の作る磁場はビオ・サバールの 法則と同じ形になることが判明している。これは大きな水槽のようなものの中で実験するこ とで実証可能である。このような電流分布を持つものを繋ぎ合わせると、前の電流素片の先 端から湧き出す電流と、後の電流素片の終端が吸い込んでいる電流がキャンセルし合うため、 すべてをループ状に繋いだ瞬間、全体の電流ループと同じ形になる。

電流素片のもう一つの難点は,回転積分との対応が悪いことである。静電場のときには,閉 曲面内に電荷がなければ発散積分は0となり,閉曲面内にあれば0でなくなるという明解な差 が生じた。一方,静磁場では回転積分がこれに対応するが,電流素片が閉曲面外あっても回転 積分が存在してしまう。こういった点から電荷に対応するような別の源があると分かりがよい ことが期待される。

アンペールの面積分法則の応用として,これからビオ・サバールの法則(Biot-Savart law) を導き出してみよう。本節の最初に述べたように,電流素片だけではなく,素片の先端から湧 き出す電流と終端へ吸い込まれる電流の全体が作る磁場を計算してみる。

準備として,放射状電流の放射点を原点とし, *z* 軸から θ だけ離れたところに円がある として,その円が,全放射状電流のどれだけと鎖交するかを求めておこう。原点を中心にし,

^{*&}lt;sup>2</sup>式 (3.9)を、電流素片をループ状に並べ、その線積分したものを、ビオ・サバールの法則と呼ぶ場合もあるが、 本書ではこの式のように短い電流素片の作る場を呼ぶことにする。

図 3.6 閉曲線と鎖交する放射状電流は立体角で計算できる。

この円を通る球を考え,その球が取り囲む球面積を,全球面積で割ってやればよい。球の半 径を*r*とすると,この面積は次のようにして求められる。

$$\int_0^\theta d\theta \, 2\pi \sin \theta \, r^2 = -2\pi \cos \theta \, r^2 \bigg|_0^\theta = 2\pi (1 - \cos \theta) \, r^2$$

この結果を利用して、zのところにある半径 ρ の円に、放射状電流がどれだけ鎖交するかを求めると、z > 0とz < 0のそれぞれに対し、次のようになる。

$$I\frac{1-\cos\theta}{2} = I\left(\frac{1}{2} - \frac{z}{2\sqrt{\rho^2 + z^2}}\right)$$
$$-I\frac{1-\cos\theta}{2} = -I\left(\frac{1}{2} + \frac{z}{2\sqrt{\rho^2 + z^2}}\right)$$

電流素片の方向を z 軸とする。z 軸の任意の点を通り、それに直角な面で、軸から半径 ρ の ごく薄い円板を置き、その円板の表面で面積分を実行する。電流が z 軸に対称であることか ら、磁場は z 軸を中心にした円に沿うように、かつ、電流に対し右ネジの関係の方向に、半径 と高さで決まる一定値をとる。円板の上下面での積分は外積が中心方向を向くことから、すべ て相殺し、側面の積分だけが生き残る。その値は、円板の厚さ t が十分薄い場合には磁場と側 面積の積となり、 $2\pi\rho Bt$ である。

一方体積中の電流のベクトル的総和は z 軸方向を向くので、電流の z 成分の総和をとる、つ まり、この円周に鎖交する電流と厚みの積をとればよいが、これは円板の位置によって異な る。囲みの結果を利用して、図 **3.6** のように、z = L/2 に発散電流の放射点、z = -L/2 に発 散電流の集束点があって、それらの間に電流素片がある場合に、円に鎖交する総電流を求める と、z が両放射点より上、または下になっているときには、放射状発散電流と放射状集束電流 のみの鎖交量を求めればよいし,間にある場合には,それに加え,電流素片との鎖交量を考え る必要がある。

z > L/2の場合には

$$I\left(\frac{1}{2} - \frac{(z - L/2)}{2\sqrt{\rho^2 + (z - L/2)^2}}\right) - I\left(\frac{1}{2} - \frac{z + L/2}{2\sqrt{\rho^2 + (z + L/2)^2}}\right)$$

L/2 > z > -L/2の場合には

$$-I\left(\frac{1}{2} + \frac{(z - L/2)}{2\sqrt{\rho^2 + (z - L/2)^2}}\right) - I\left(\frac{1}{2} - \frac{z + L/2}{2\sqrt{\rho^2 + (z + L/2)^2}}\right) + I$$

z < -L/2の場合には

$$-I\left(\frac{1}{2} + \frac{(z - L/2)}{2\sqrt{\rho^2 + (z - L/2)^2}}\right) + I\left(\frac{1}{2} + \frac{z + L/2}{2\sqrt{\rho^2 + (z + L/2)^2}}\right)$$

さて、Lがzや ρ に対し十分小さいとして、以下のように近似する。

$$\frac{1}{\sqrt{\rho^2 + (z - L/2)^2}} = \frac{1}{r} + \frac{zL}{2r^3}$$

その結果は、いたるところ同じ形となる。

$$IL\left(\frac{1}{2r} - \frac{z^2}{2r^3}\right) = \frac{IL\sin^2\theta}{2r}$$

この式を $\mu_0 t$ 倍し, 円板の側面積 $2\pi\rho t = 2\pi r \sin \theta t$ で割ると, ビオ・サバールの法則の磁場が得られる。

$$B = \frac{\mu_0}{4\pi} \frac{IL\sin\theta}{r^2}$$

ベクトルで表現すると、 Δr を長さ Δr で電流素片の方向を向くベクトルとして、

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \frac{I \Delta \boldsymbol{r} \times \boldsymbol{r}}{r^3} \tag{3.10}$$

ビオ・サバールの法則とは、この磁場を電流素片だけが作っていると見なしたものである。

同様の結果は、アンペールの線積分法則からも得ることができる。その場合には円板の周辺 の位置に積分路を置けばよい。磁場は積分路に鎖交する電流を積分路の長さで割り、さらに µ0 倍すればよいから、結果は上記の計算とまったく同じになる。

磁場を作り出しているのは微小電流ループであるという立場からスタートしアンペールの法 則を導き出し,さらにビオ・サバールの法則にまで至ったが,現実的な電線上を流れる電流の 作る磁場を求めるには,それを微小電流ループの集合として求めるよりは,(3.10)に示したビ オ・サバールの法則を使って計算する方が遥かに楽である。実際,次節で微小電流ループの作 る磁場を計算しているが,必ずしも簡単な形ではないらである。

I dr' の作る磁場から,アンペールの法則が直接導けないかと予想する読者も多いかと思われる。残念ながら,電流素片の作る磁場からはアンペールの法則は導けないのである。例 えば,球面での回転積分をその中心に電流素片を置いて実行してみよう。

$$\frac{\mu_0 I}{4\pi} \int dS \, \frac{\sin\theta}{r^2} = \frac{\mu_0 I}{4\pi} \int_0^\pi \int_0^{2\pi} r^2 \sin\theta \, d\theta \, d\phi \, \frac{\sin\theta}{r^2} = \frac{\pi}{4} \, \mu_0 I$$

期待する右辺は μ₀I であるので,やや少ない値しか得られない。しかも,電流素片の位置を 変えてみると,この係数は値が変わるのである。

点電荷は静電場において,きわめて便利な要素であった。点電荷が閉曲面の外にあると, 発散積分にはまったく影響を与えないからである。これと比較すると,電流素片はそのよう な要素になっていない。電流素片が閉曲面の外,例えば球の半径方向に置かれていると,球 面上に回転的な磁場を作り出す。そのため,回転積分が存在するのである。上の式が期待通 りにならないのは,この辺の事情が深く関与している。

ただし,電流素片ではなく,これがループ状になっていると,任意の閉曲線に対しアン ペールの法則が導ける。その導出法については,他書を参考にされたい^{*3}。

3.2.5 微小電流ループの作る磁場

きわめて微小な電流ループの作る磁場を,きちんと計算しておこう。ただし,この節は,数 学的にやや面倒なので,読み飛ばしてもらっても構わない。

(3.2) 節に示したように、微小電流ループと微小磁石は等価である。これを利用して、まず 微小磁石の磁荷モデルによる磁場を求めよう。微小磁石は、長さ*l*、断面積 ΔS の細長い形状 とし、両端に正負の磁荷 Q_m と $-Q_m$ を有しているとしよう。*l*は十分小さなベクトルとし、 正磁荷および負磁荷の位置ベクトルを 0、-lとする。これら磁荷はクーロン場を作るので、磁 場は次式のようになる。

$$oldsymbol{B} = -rac{Q_m}{4\pi} \left(rac{oldsymbol{r}+oldsymbol{l}}{|oldsymbol{r}+oldsymbol{l}|^3} - rac{oldsymbol{r}}{|oldsymbol{r}|^3}
ight)$$

ここで,微小磁石を十分小さくする,つまり*l*, Δ*S* をともに十分小さくした極限を考えよう。右辺の括弧内の二項は,*r* による微分の形をしている。ただし,ベクトルを変数とするベクトル関数の微分であるので,ちょっと工夫が必要であり,次式を利用して変形する。

$$oldsymbol{f}(oldsymbol{r}+oldsymbol{l}) - oldsymbol{f}(oldsymbol{r}+oldsymbol{l}) - oldsymbol{f}_x(oldsymbol{r})) + \cdots$$
 $= oldsymbol{i} \left(rac{\partial f_x}{\partial x} l_x + rac{\partial f_x}{\partial y} l_y + \cdots
ight) + \cdots$
 $= oldsymbol{i} (oldsymbol{l} \cdot
abla) f_x + \cdots = (oldsymbol{l} \cdot
abla) oldsymbol{f}$

その結果は次式のようになる。

$$oldsymbol{B} = -rac{1}{4\pi}(oldsymbol{p}_m\cdot
abla)rac{oldsymbol{r}}{|oldsymbol{r}|^3}$$

ただし, $\boldsymbol{p}_m = Q_m \boldsymbol{l}$ である。

なお、今後、電流モデルと比較したいため、 $p_m = Q_m l = \mu_0 K \Delta S l = \mu_0 I \Delta S = \mu_0 m \delta$ 利用して、上式を書き換えておこう。

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} (\boldsymbol{m} \cdot \nabla) \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3}$$
(3.11)

ここで、電流に面積ベクトルを掛けて得られる *m* を、磁気モーメント(magnetic moment) と呼ぶ。この微分計算を実行すると次式が得られる。

$$B = \frac{\mu_0}{4\pi} \frac{3(m \cdot r)r - mr^2}{r^5}$$
(3.12)

さて,この場は磁荷モデルの結果であるので,発散はあるが,回転のない場である。電流モ デルの作る場は,逆に回転はあるが,発散のない場である。そうするためには,磁極間に一様 な磁場を追加する必要がある。このモデルでは磁極は点磁荷であり,また距離は無限に短いと しているので,追加すべき磁場はデルタ関数で与えられることになる。この結果,発散がな く,回転がある微小電流ループの作る磁場は,次式で与えられることになる。

$$oldsymbol{B} = rac{\mu_0}{4\pi} (oldsymbol{m}\cdot
abla) rac{oldsymbol{r}}{|oldsymbol{r}|^3} + \mu_0 rac{oldsymbol{m}}{l} b(oldsymbol{r})$$

ここで,第一項は負磁荷に入る放射状の磁場,第二項は,負磁荷から正磁荷に向かう一様磁場 である。この一様磁場を表すのに,関数 b(**r**) と記載した関数を使っているが,この関数は,負 磁荷から正磁荷までを繋ぐ細い領域でだけ,1/ΔS の大きさを有する線状デルタ関数である。

この第二項については,面積だけでなく,長さもきわめて短いことから,点状デルタ関数 で表すことができる。関数 b に体積を掛けたものが l になることから,第二項の体積積分は µ0**m** 倍に収束するので,以下のように変形することができる。

$$oldsymbol{B} = rac{\mu_0}{4\pi} (oldsymbol{m}\cdot
abla) rac{oldsymbol{r}}{|oldsymbol{r}|^3} + \mu_0 oldsymbol{m} \delta(oldsymbol{r})$$

上式は, デルタ関数を式 (2.10) により, クーロン場の div に置き換えることにより, 次にように書き換えられる。

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \left[(\boldsymbol{m} \cdot \nabla) \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3} - \boldsymbol{m} \left(\nabla \cdot \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3} \right) \right]$$

 $\operatorname{grad}(\boldsymbol{A}\cdot\boldsymbol{B}) = (\boldsymbol{B}\cdot\nabla)\boldsymbol{A} + (\boldsymbol{A}\cdot\nabla)\boldsymbol{B} + \boldsymbol{A}\times(\nabla\times\boldsymbol{B}) + \boldsymbol{B}\times(\nabla\times\boldsymbol{A})$

の公式と m が一定であること、かつ、 $\nabla imes [r/|r|^3] = 0$ を利用すると、次のように変形できる。

$$\boldsymbol{B} = -\frac{\mu_0}{4\pi} (\boldsymbol{m} \times \nabla) \times \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3}$$
(3.13)

この微分計算を実行すると、次式のようになる。

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \left(\frac{3(\boldsymbol{m} \cdot \boldsymbol{r})\boldsymbol{r} - \boldsymbol{m}\boldsymbol{r}^2}{r^5} + \boldsymbol{m}\delta(\boldsymbol{r}) \right)$$
(3.14)

式 (3.12) との差は、原点にあるデルタ関数だけとなる。

式 (3.11) と式 (3.13) の差を際立たせるために、両式に現れる $r/|r|^3$ を、a ぐらい の範囲に緩めた $r/\sqrt{|r|^2 + a^2}^3$ なる関数に置き換えてみよう。この場合、両者の差は $(\mu_0/4\pi)m \operatorname{div} \left[r/\sqrt{|r|^2 + a^2}^3 \right]$ となる。結果は、図 3.7 に示すように、両者の作る磁場は、 十分遠方ではほぼ同じ形になるが、原点付近では、前者は発散があって回転のない場となり、 後者は回転があって発散のない場となっている。また、両者の差は $a \to 0$ でデルタ関数の p_m 倍となる。やはり、前者の場には拡がったデルタ関数を加えないと、電流モデルの磁場として はおかしいことになる。

ここでは,原点付近の構造を知るために,微分が連続な関数で説明を行ったが,次のような微分は不連続であるが,より平易なデルタ関数モデルを使うことも可能である。

式 (3.12) は原点での発散や回転の情報が欠損しているが,そこを若干補足すれば,発散 も回転も計算できるようになるのである。まず式 (3.12) の磁場は面白い性質を持っている。 原点を中心とする任意の半径 *a* の球面で,*dS* と *B* の内積と外積を計算してみると,それぞ れ,次のような簡単な形となるのである。

$$d\mathbf{S} \cdot \mathbf{B} = 2\frac{\mu_0}{4\pi} \frac{dSm}{a^3} \cos\theta$$
$$d\mathbf{S} \times \mathbf{B} = -\frac{\mu_0}{4\pi} \frac{dSm}{a^3} \sin\theta$$

図 3.7 微小磁石の磁荷モデルと電流モデルの作る磁場 B を真横から見る (a = 1)。

ただし θ は極座標の頭頂角である。

そこで、球外の場は式 (3.12) のままとし、球内だけを、-μ₀m/4πa³ と一定ベクトル場 に置き換えると、いたるところ回転が消失する。これを、発散あり回転なしの磁荷モデルと 見なすのである。次に、電流モデルとして、同様に、球内だけを、2μ₀m/4πa³の一定ベク トル場に置き換えると、この場合はいたるところ発散が消失し、回転あり発散なしの場が得 られる。

この二つの場の差は、 $3\mu_0 m/4\pi a^3$ となるが、これを体積積分すると、 $\mu_0 m$ となるから、 確かに、デルタ関数 $\mu_0 m \delta(r)$ となっていることが確認できる。

この磁場のほうが,簡単な形をしているが,これらの関数の div や rot をとると,面磁 荷や面電流になるため,先のような例を示したのである。

さて,式 (3.13) で与えられる微小電流の作る磁場を使って,ビオ・サバールの法則を導き出 すことができる。前にも述べたように,任意の電流ループは,そのループの囲む曲面を分割す ることにより,複数の微小電流ループの集合に置き換えることが可能である。この際,分割さ れた各要素には,大きな電流ループに流れているのと同じ電流が流れているものとする。

この結果、任意の電流ループの作る磁場は以下のようになる。

$$\boldsymbol{B} = -\frac{\mu_0 I}{4\pi} \int_{\mathrm{S}} (d\boldsymbol{S} \times \boldsymbol{\bigtriangledown}) \times \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3} = \frac{\mu_0 I}{4\pi} \oint_{\mathrm{C}} d\boldsymbol{r} \times \frac{\boldsymbol{r}}{|\boldsymbol{r}|^3}$$

この式は、ビオ・サバールの法則(Biot-Savart law)の積分形となっている。このように、微 小電流ループの作る磁場からも、ビオ・サバールの法則を導くことができるのである。実際に 電流ループが与えられている時の磁場の計算は結局、この式で計算することになる。

本節に示した結果は,磁荷モデルが電流モデルとどこが異なっているかであり,結論を言えば,原点(厳密には磁気モーメント内)の磁場だけが異なることが判明した。したがって,磁

気モーメントからある程度遠方における磁場については,いずれを使っても構わないことにな る。一方,二つのモデルの等価性を完全に示すためには,任意の磁場から受ける二つのモデル の力についても検証が必要となる。この議論はやや後の 7.1 節でなされるが,やはり原点(厳 密には磁気モーメント内)の部分が受ける力だけが異なり,大局的にはどちらのモデルを利用 してもよいことになる。

3.3 動的電磁場

定常電流はとぎれることなく流れ,完全なループを構成する。しかし,キャパシタへ流れ 込む電流は極板から先へ流れていく道がなく,ループを構成しない。この場合,電荷はどん どん充電されていくので,一定ではなくなる。こうした電荷や電流が変化する場合を,**静的** (static)に対し,**動的**(dynamic)と呼ぶ。この例にあげたような動的な場合には,電流は不 連続になることがあるのである。すると困ることが発生する。式(3.8)に示したアンペールの 線積分の法則で,閉曲線Cを決めると左辺は一義に決まるのに,右辺の面積分はSの選び方 で変化してしまうことになる。例えばSがキャパシタの極板間を通過する場合,磁場が存在し ても右辺は0になってしまうのである。

そこでアンペールの法則に何らかの訂正が必要となる。マクスウェルの考えたのは次のよう な補正である。それは不連続な電流に補正項を加え,連続にしようというものであり,電流と 電荷の関係を使う。閉曲面から流れ出る電流の総和は,その内部の電荷の減少を引き起こす。

$$\oint_{\mathbf{S}} d\boldsymbol{S} \cdot \boldsymbol{J} = -\frac{\partial Q}{\partial t}$$

右辺の Q を、ガウスの法則 $\oint_{S} dS \cdot E = Q/\varepsilon_0$ を用い、E の面積分に変更すると、次式が得られる。

$$\oint_{\mathbf{S}} d\boldsymbol{S} \cdot \left(\boldsymbol{J} + \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \right) = 0$$

つまり, **J** は不連続になっても, $J + \varepsilon_0 \partial E / \partial t$ は連続量になるので, これをアンペールの定 理の右辺に使おうという補正である。この補正量 $\varepsilon_0 \partial E / \partial t$ のことを**変位電流** (displacement current) と呼んだ。抵抗 0 の配線の上では電場はないので, 当然変位電流項はなくなる。

この式の微分形は動的な場合の電流連続の法則(current continuity law)と呼ぶ。

$$\operatorname{div} \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0$$

ここで、ガウスの法則の微分形を使って、 $\varepsilon_0 \operatorname{div} E \mathrel{\varepsilon} \rho$ に書き換えている。

変位電流を加えたときのアンペールの面積分法則(Ampere surface integral law)の積分形 は次のようになる。

$$\oint_{S} d\boldsymbol{S} \times \boldsymbol{B} = \int_{V} dV \left(\mu_{0} \boldsymbol{J} + \varepsilon_{0} \mu_{0} \frac{\partial \boldsymbol{E}}{\partial t} \right)$$

つまり,閉曲面に沿った回転積分は,閉曲面に囲まれた体積内の電流と変位電流の総和になるという定理である。div B = 0のほうは変わらないので,磁場は大部分のところで発散も回転もない場であり,電流と変位電流の存在するところでのみ,回転のみが存在する。

左辺を内積面積分の定理により rot B の体積積分に変えると、次式が得られる。

$$\int_{\mathcal{V}} dV \operatorname{rot} \boldsymbol{B} = \int_{\mathcal{V}} dV \left(\mu_0 \boldsymbol{J} + \varepsilon_0 \mu_0 \frac{\partial \boldsymbol{E}}{\partial t} \right)$$

積分記号をはずすと,**アンペールの法則の微分形**(differential form of Ampere law)が得 られる。

$$\operatorname{rot} \boldsymbol{B} = \mu_0 \boldsymbol{J} + \varepsilon_0 \mu_0 \frac{\partial \boldsymbol{E}}{\partial t}$$

以上,電場の時間変化が磁場に及ぼす影響を示したが,磁場が時間変化すると電磁誘導に関 するファラデーの法則(Faraday law)により,電場が発生する。この場合電場の閉曲線に沿 う積分は磁束の時間変化に比例する。そこで,線積分型の回転積分で表すと,次のように補正 する必要がある。

$$\oint_{\mathbf{C}} d\boldsymbol{r} \cdot \boldsymbol{E} = -\frac{\partial}{\partial t} \int_{\mathbf{S}} d\boldsymbol{S} \cdot \boldsymbol{B}$$

ストークスの定理 $\oint_{\mathbf{C}} d\mathbf{r} \cdot \mathbf{E} = \int_{\mathbf{S}} d\mathbf{S} \cdot \operatorname{rot} \mathbf{E}$ を利用して、上式を微分形に変形すると、次のようになる。

$$\operatorname{rot} \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

これがファラデーの法則の微分形 (differential form of Faraday law) である。

以上のように,動的な電場は,発散も回転もありうる場ということになる。一見,面倒なよ うであるが,次のように考えると,それほど複雑でもなくなる。電場は大部分のところでは, 発散も回転もないが,電荷があると,発散を起こす源となり,磁場の変化があると,回転を起 こす源となる。磁場も大部分のところでは,発散も回転もないが,電流があると,回転を起こ す源となり,電場の変化があっても,回転を起こす源となる。多くの,典型的な事例では,こ れら四つの要因は分離できることが多いので,このような考え方は,電磁気学の理解にとっ て,きわめて有用である。

ここまでに、基本方程式として、積分形と微分形の両方を示したが、改めて微分形を示して おこう。以下の微分形は、マクスウェルが定式化したため、まとめて呼ぶときにはマクスウェ ル方程式(Maxwell equations)という。

div
$$\boldsymbol{E} = \frac{1}{\varepsilon_0} \rho$$

rot $\boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$ (3.15)

$$\operatorname{div} \boldsymbol{B} = 0 \tag{3.16}$$

$$\operatorname{rot} \boldsymbol{B} = \mu_0 \boldsymbol{J} + \varepsilon_0 \mu_0 \frac{\partial \boldsymbol{E}}{\partial t}$$

マクスウェル方程式の各式は,これからもたびたび利用するが,そのたびに,式番で引用する のは分かりづらいので,以後,順に div *E* 式, rot *E* 式, div *B* 式, rot *B* 式と呼ぶことにする。

以上述べたマクスウェル方程式に**ローレンツカ**(Lorentz force)の式を加えたものが、電磁 気学の基本方程式である。なお、電流連続の法則は、div E 式を時間で微分したものと、div B式の div をとったものから E を消去し、さらに div rot が 0 になることを利用すると、ただち に得られるため、基本方程式には含めないこととする。

第4章

物質と電磁場

電磁気に影響を与える物質とは,導体,誘電体,磁性体の三種類である。これらが存在する と,どのような影響があるか,また,これらをどのようにあつかうかについて,説明する。も ともと,物質があっても,電磁気学の基本法則は何ら変わらない。特に誘電体や磁性体は,外 部から電場や磁場を与えると,物質中に電荷や電流が誘起されるが,これら物質中の電荷や電 流をいちいち意識したくないという立場から,これらを,場への補正として取り込む立場があ るので,注意が必要である。一方,導体は,電場に比例して電流の流れる材料であるが,その 電流は意識されて議論されることが多い。

4.1 導体

導体 (conductor) とは電場を与えると電流の流れる材料である。通常の導体では電子の移動 を妨げる不純物が多く、電子は力に比例して加速され、一瞬にして力に比例する臨界速度で走 るようになる。つまり、 $v = \mu_m F/q$ となる。ここでは、 μ_m は透磁率ではなく、移動度と呼ば れる定数である。したがって、n を導体中の電子密度として、ローレンツ力 $F = q(E+v \times B)$ の両側に $\mu_m/1$ を掛けると、 $v = \mu_m(E+v \times B)$ が得られる。

nq v = Jであることを考慮し、 $\sigma = \mu_m nq$ と置くと、次式が得られる。

$$oldsymbol{J} = \sigma \left(oldsymbol{E} + rac{oldsymbol{J} imes oldsymbol{B}}{n \, q}
ight)$$

通常,金属中では*n*はきわめて大きいため,第二項はほとんど効かない。そこで次のように近 似できる。

$$J = \sigma E$$

 σ は**導電率**(conductivity)と呼ばれる。ただし、半導体などの材料ではnが小さく、第二項 は無視できず、ホール効果(Hall effect)と呼ばれる電気伝導に磁気が関与する効果が現れる。 導体はホール効果が無視できる場合でも,導電率によって,面白い応答をする。均質な導体 内の電磁場を考えよう。この場合,次式が成立する。

$$J = \sigma E$$

この式の div をとり、左辺の div J を $-d\rho/dt$ で置き換える。また、右辺の div E をガウス の法則の微分形を用いて ρ/ε_0 で置き換えて、まとめ直すと次式が得られる。

$$\frac{d\rho}{dt} + \frac{\sigma}{\varepsilon_0}\rho = 0$$

この方程式を解くと、電荷はいたるところで次のように減衰していくことが分かる。

$$\rho = \rho(0) \ e^{-\sigma t/\varepsilon_0}$$

大変不思議なことに、電荷が伝わっていくような様子が見えず、その場で、誘電緩和時間と 呼ばれる ε_0/σ 程度の時間で減衰していくかに見える。このような現象を**誘電緩和**(dielectric relaxation)と呼ぶ。実は電荷は、電荷の多いところから少ないところへ逃げていくのである が、少ないところの電荷ももっと少ないところへ逃げていくので、全体が一様に減衰していく のである。

したがって、十分時間が経つと、 $\rho = 0$ としてよい。つまり、電荷は導体の表面だけに存在 するとしてよい。さらに、 σ が十分大きいと、 $J = \sigma E$ の関係から、有限のJを達成するた めには E は限りなく小さくなる。

導体は σ の非常に大きな材料であるから、この誘電緩和は一瞬にして起こることとなる。また、J が有限になるためには E がほとんど 0 でなければならなくなる。逆に、E = 0 を仮定すると、まず、div $E = \rho/\varepsilon_0$ より、導体の内部では次式が得られる。

$$\rho = 0$$

この結果は誘電緩和の最終値と同じ結論である。

さらにマクスウェル方程式の rot E 式である rot $E = -\partial B / \partial t$ の左辺が 0 となるから次式 が得られる。

$$\frac{\partial \boldsymbol{B}}{\partial t} = 0$$

つまり、磁場が時間変動しないという磁場凍結(freezing of magnetic field)の原理が導かれ る。さらに、マクスウェル方程式の rot **B** 式を時間微分したものに **E** や **B** の条件を代入する ことにより、 $\partial J/\partial t = 0$ が誘導できる。なお、超伝導体中では **B** = 0 が成立するが、これは 超伝導体が単なる抵抗 0 の導体ではないことを示している。

図 4.1 一つのミクロな電気モーメントに対する分極ベクトル。

4.2 誘電体

まず,誘電体(dielectric material)とは電気的に中性の材料であるが,電場をかけると, 内部の電荷がわずかに移動することにより,全体では相変わらず中性であるが,部分的には 電荷が発生するような材料である。このような材料は正電荷と負電荷を組にして考えるとよ い。電場のない場合は,正電荷と負電荷が各点で正確に重なっており,電荷がまったく見えな いが,電場をかけると,これらが各点でわずかに分離すると理解する。こうした現象を**分極** (polarization),発生した電荷を**分極電荷**(polarization charge)という。

このとき,組をなす電荷の電気量をQとし,負電荷から正電荷に向かうベクトルをlとするとき,p = Qlを電気モーメント (electric moment) という。また,pに $\delta_L(r,l)$ なる線状 デルタ関数を掛けて,この線分上にだけpが存在できるようにした $P = p\delta_L(r,l)$ を分極ベクトルという。

この存在領域を少し太くして、図 4.1 に示すように、断面積 S の円柱とすると、理解しや すいかも知れない。この円柱の体積を V とするとき、分極ベクトルは、この円柱内だけで値 Ql/V なる一定値となり、円柱外では 0 である。第 2 章 2.7 節で示したように、こうした円柱 状の一様ベクトル場は、その頭端に負の発散が、また尾端に正の発散があり、それらの値は Ql/V = Q/S である。ただし、負の発散側に正電荷があるので、電荷は発散の符号反転した ものとなることに注意してほしい。円柱の断面積を限りなく小さくすると、これら発散の体積 積分は、それぞれ ±Q となる^{*1}。

実際には、誘電体にはこのような対が無数にある。したがって、通常、分極ベクトル (polarization vector) P は、図 4.2 のように、これらを集めたものになる。

^{*1} 分極ベクトルは,必ずしも負電荷から正電荷へ向かう直線で定義する必要はない。始点と終点が一致すれば, 任意の曲線でも構わない。

図 4.2 分極ベクトルの例。実線で示した直線領域にのみ、上向きのベクトル場が存在している。

$$\boldsymbol{P} = \sum_i Q_i \boldsymbol{l}_i \delta_L(\boldsymbol{r} - \boldsymbol{r}_i, \boldsymbol{l}_i) = \sum_i \boldsymbol{p}_i \delta_L(\boldsymbol{r} - \boldsymbol{r}_i, \boldsymbol{l}_i)$$

ここで、 r_i は各電気モーメント p_i の存在する場所である。この定義にしたがうと、Pは位置の関数であり、ほとんどのところで0であるが、各電気モーメントの正負を結ぶ直線上でのみデルタ関数的に大きな値を持つベクトル場のような概念である。

マクロの立場では,電気モーメントのつぶつぶが見えない程度の広い範囲で平均化すること により,もっと滑らかな概念にすることが可能である。このため,この式の両辺を適切なやや 大きな体積で体積積分し,両辺をその体積で除してみよう。

$$\boldsymbol{P} = \frac{1}{V} \int dV \sum_{i} \boldsymbol{p}_{i} \delta_{L}(\boldsymbol{r} - \boldsymbol{r}_{i}, \boldsymbol{l}_{i}) = \frac{1}{V} \sum_{i} \boldsymbol{p}_{i} = n \langle \boldsymbol{p} \rangle$$

ここで, *n* は単位体積当たりのモーメントの個数, 〈*p*〉は電気モーメントのベクトル的平均値 である。多くの場合, *p* は,ある程度の範囲で同じ値をとることが多いので,その場合には平 均の記号は不要となる。

逆に電極分極ベクトル **P** が与えれらていて,分極電荷を求めたい場合には,**P** の定義から 明らかなように,次式により計算することができる。

$$\rho_p = -\operatorname{div} \boldsymbol{P} \tag{4.1}$$

マクロな立場の場合,分極ベクトルは滑らかなベクトル場となるため,分極電荷は領域の縁に のみ発生する。したがって領域の縁を含む経路では *P*の周回積分は0とはならず,

rot $P \neq 0$ (分極領域の縁付近)

クーロンの法則に基づく電場は,我々が意識して置いた電荷を自由電荷 (free charge) ρ_f および分極の結果現れる分極電荷 ρ_p の合計である全電荷 (all charge) $\rho = \rho_f + \rho_p$ により形 成される。

div
$$\boldsymbol{E} = \frac{1}{\varepsilon_0} (\rho_f + \rho_p) = \frac{1}{\varepsilon_0} (\rho_f - \operatorname{div} \boldsymbol{P})$$

この結果,

$$\operatorname{div}(\varepsilon_0 \boldsymbol{E} + \boldsymbol{P}) = \rho_f \tag{4.2}$$

の式が得られる。なお, ρ_p は物質に束縛されているため, 自由電荷に対し, 束縛電荷 (bounded charge) ρ_b とも書かれる。

次式で電**束密度**(electric flux density)**D**を定義する。

$$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P}$$

電束密度を使うと、式(4.2)は次のように書き直すことができる。

div
$$\boldsymbol{D} = \rho_f$$

これにより、電束密度は自由電荷を湧き出し、吸い込みとするベクトル場であることが分かる。また、静的であっても、分極領域の縁付近では rot $P \neq 0$ であるので、

$$rot \mathbf{D} \neq 0$$
 (分極領域の縁付近)

多くの材料は、Pが $\varepsilon_0 E$ に比例するという線形応答(linear response)をする。さらに、マ クロな均質媒質を仮定すると、次式が成立する。

$$\boldsymbol{P} = \chi_p \varepsilon_0 \boldsymbol{E}$$

この $\varepsilon_0 E$ に対する **P** の比例係数 χ_p を, 電気感受率 (electric susceptibility) という。 χ_p は 一般に正数である。

この場合, **D** も **E** に比例する。

$$\boldsymbol{D} = (1 + \chi_p) \varepsilon_0 \boldsymbol{E}$$

この E に対する D の比例係数 $\varepsilon = (1 + \chi_p)\varepsilon_0 \delta$, 誘電率 (permittivity) という。 ε は ε_0 以上の正数となる。

線形応答する均質な材料中では、材料中に自由電荷がない場合、div D = 0となる。この結果、div P = 0が成立する。つまり、分極電荷は材料中に現れず、材料表面にしか現れない。

例えば、図 4.3 に示すように、厚さに対し、十分広い電極面積を持つ平行平板キャパシタの中に、電極と平行に厚みよりやや薄い誘電体を挿入した場合、対称性より、電場も電束密度も、 キャパシタの内部では、電極に対し、垂直なベクトルとなる。自由電荷は両極板にしか存在し ないが、分極電荷は誘電体表面にのみ発生する。まず、Dは自由電荷のところでしか、発生、 消滅が起こらないから、Dの大きさは $D = \sigma_f$ となる。 σ_f は、自由電荷の面密度である。下

図 4.3 キャパシタ内の誘電体における分極は、電場の方向に発生する。

向きを正とすると $D = \sigma_f$ となる。この結果, 誘電体のない電極間空間では $\varepsilon_0 E = D = \sigma_f$ となる。

一方,誘電率 ε の誘電体中では,比誘電率を $\varepsilon_r = \varepsilon/\varepsilon_0$ として, $\varepsilon_0 E = D/\varepsilon_r = \sigma_f/\varepsilon_r$ と, 絶対値は空間中の電場より弱くなる。また,誘電体中の分極は $P = D - \varepsilon_0 E = (1 - 1/\varepsilon_r)\sigma_f$ となる。P は誘電体内で一定であるが,空間では突然 0 となるため,div P で与えられる分極 電荷は面状デルタ関数となる。つまり,誘電体下面で面密度 $\sigma_p = P = (1 - 1/\varepsilon_r)\sigma_f$ となる。 誘電体表面の両側の電場の発散は,この面密度と一致する。

なお、 σ_f を固定して、 ε_r を大きくしていくと、D は変化しないため、E は誘電体中でほぼ 0 となり、ほとんど導体のような性質を持ってくる。このため、両電極間の電位差はきわめて 少なくなる。逆に電位差を固定すれば、きわめて多量の自由電荷を溜めることができることに なる。これが**キャパシタ**(capacitor)の原理である。キャパシタは**コンデンサ**(condensor) とも呼ばれる。

図に示したような構造では,誘電体の厚みを *d*_d,その他の空間の厚みを *d*_v とすると,両極間の電位差は次式で与えられられる。

$$\phi = \frac{(d_d/\varepsilon_r) + d_v}{\varepsilon_0} \sigma_f$$

また,電位差に対する自由電荷の比をキャパシタンス(capacitance)と呼ぶ。この場合,電極 面積 S とすると,キャパシタンス C は次式で与えられる。

$$C = \frac{\varepsilon_0 S}{(d_d/\varepsilon_r) + d_v}$$

 ε_r が大きいと, Cがどんどん増えていき, さらにその傾向は, d_v が少ないほど効果的であることが分かる。 $d_v \to 0$ の極限で考えると, $C = \varepsilon_r \varepsilon_0 S/d_r \propto \varepsilon_r$ なので, ϕ 一定ならば $Q_f \propto \varepsilon_r$, また Q_f 一定ならば $\phi \propto 1/\varepsilon_r$ となる。
4.3 磁性体

磁性体 (magnetic materials) は、我々が意識して置いた自由電流 (free current) 以外に、 材料中に無数の微小電流ループのあるような材料である。このような内部電流が存在すること を磁化 (magnetization) と呼ぶ。磁化が永久に存在するときは磁石になり、外部磁場によって 誘起されるときには常磁性体になる。この無数の微小電流ループを磁化電流 (magnetization current) という。このとき、電流値を *I、ループ*により囲まれた面積ベクトルを *S* とすると き、m = IS を磁気モーメント (magnetic moment) という。また、 $m \approx \delta_S(r, S)$ なる面状 デルタ関数を掛けて、この面積上にだけ *m* が存在できるようにした $M = m\delta_S(r, S)$ を磁化 ベクトルという。

存在領域を少し厚くして、図 4.4 に示すように、厚さ*l*の板とすると、理解しやすいかも知 れない。この板の体積を V とするとき、磁化ベクトルは、この板内だけで値 *IS*/V なる一定 値となり、板外では 0 である。第 2 章 2.7 節で示したように、こうした板状の一様ベクトル場 は、その周辺に右ネジ方向の回転があり、その値は *IS*/V = *I*/*l* である。板の厚さを限りなく 薄くすると、この回転の厚さ方向の積分は、*I* となる^{*2}。

実際の磁性体にはこのようなループが無数にある。したがって,通常,磁化ベクトル (magnetization vector) M は,図 4.5 に示すように,これらを集めたものである。

$$oldsymbol{M} = \sum_i I_i oldsymbol{S}_i \delta_S(oldsymbol{r} - oldsymbol{r}_i, oldsymbol{S}_i) = \sum_i oldsymbol{m}_i \delta_S(oldsymbol{r} - oldsymbol{r}_i, oldsymbol{S}_i)$$

ここで, *r_i* は各磁気モーメント *m_i* の存在する場所である。この定義にしたがうと, *M* は位置の関数であり,ほとんどのところで0であるが,各電流ループの囲む面上でのみデルタ関数的に大きな値を持つベクトル場のような概念である。

マクロの立場では,磁気モーメントのつぶつぶが見えない程度の広い範囲で平均化すること により,もっと滑らかな概念にすることが可能である。このため,この式の両辺を適切なやや 大きな体積で体積積分し,両辺をその体積で除してみよう。

図 4.4 一つのミクロな磁気モーメントに対する磁化ベクトル。

^{*&}lt;sup>2</sup> 磁化ベクトルは,必ずしも電流ループに対し平らに張った平面で定義する必要はない。縁さえ電流ループに一 致していれば,任意の曲面でも構わない。したがって逆に電流ループが捻れている場合もきちんと定義できる。

図 4.5 磁化ベクトルの例。実線で示した板状領域にのみ、上向きのベクトル場が存在している。

$$oldsymbol{M} = rac{1}{V} \int dV \sum_i oldsymbol{m}_i \delta_S(oldsymbol{r} - oldsymbol{r}_i, oldsymbol{S}_i) = rac{1}{V} \sum_i oldsymbol{m}_i = n \langle oldsymbol{m}
angle$$

ここで, *n* は単位体積当たりのモーメントの個数, 〈*m*〉は磁気モーメントのベクトル的平均値 である。多くの場合, *m* は, ある程度の範囲で同じ値をとることが多いので, その場合には 平均の記号は不要となる。

逆に磁化ベクトル *M* が与えれらていて,磁化電流を求めたい場合には,*M* の定義から明 らかなように,次式により計算することができる。

$$\boldsymbol{J}_M = \operatorname{rot} \boldsymbol{M}$$

マクロな立場の場合,分極ベクトルは滑らかなベクトル場となるため,分極電荷は領域の縁に のみ発生する。

物質のある場合のマクスウェルの方程式であるが、自由電流、磁化電流以外に、誘電体も、 分極の際に起こる電荷の移動も瞬時的な**分極電流**(polarization current) J_p を流すことを考 慮する必要がある。

$$J_p = \frac{\partial \boldsymbol{P}}{\partial t} \tag{4.3}$$

として、これらの合計である**全電流**(all current) $J = J_f + J_M + J_p$ が、アンペールの法則 に基づく磁場を発生する。

$$\operatorname{rot} \boldsymbol{B} - \varepsilon_0 \mu_0 \frac{\partial \boldsymbol{E}}{\partial t} = \mu_0 \left(\boldsymbol{J}_f + \boldsymbol{J}_M + \boldsymbol{J}_p \right) = \mu_0 \left(\boldsymbol{J}_f + \operatorname{rot} \boldsymbol{M} + \frac{\partial \boldsymbol{P}}{\partial t} \right)$$

なお、 $J_M + J_p$ は物質に束縛されているため、自由電流に対し、束縛電流 (bounded current) J_b とも書かれる。

上式の結果,

$$\operatorname{rot}\left(\frac{1}{\mu_0}\boldsymbol{B} - \boldsymbol{M}\right) - \frac{\partial}{\partial t}\left(\varepsilon_0\boldsymbol{E} + \boldsymbol{P}\right) = \boldsymbol{J}_f \tag{4.4}$$

が得られる。

次式で磁場強度(strength of magnetic field) H を定義する。

$$\boldsymbol{H} = \frac{\boldsymbol{B}}{\mu_0} - \boldsymbol{M} \tag{4.5}$$

すると式は、次のように美しく書き換えることができる。

$$\operatorname{rot} \boldsymbol{H} = \boldsymbol{J}_f + \frac{\partial \boldsymbol{D}}{\partial t} \tag{4.6}$$

多くの材料は,M が B/μ_0 に比例するという線形応答をする。さらに,マクロで均質な媒質を仮定すると,次式が成立する。

$$M = \alpha B / \mu_0$$

この場合, **H** も **B** に比例する。

$$\boldsymbol{H} = (1 - \alpha)\boldsymbol{B}/\mu_0 \tag{4.7}$$

この **B** に対する **H** の比例係数の逆数 $\mu = \mu_0/(1 - \alpha)$ を透磁率 (permeability) という。

磁性体の場合には、歴史的に、まず自由電流があり、これの作る磁場により磁化電流が誘導 され、これが自由電流の作る磁場を強めるという立場をとることが多く、これに対応して、ま ず H があり、これにより M が誘導され、強められた磁場が B であると理解する。このた め、H に対する M の比例係数 χ_m を、磁気感受率(magnetic susceptibility)という。

$$\boldsymbol{M} = \chi_m \boldsymbol{H}$$

であるので,

$$\boldsymbol{B}/\mu_0 = \boldsymbol{H} + \boldsymbol{M} = (1 + \chi_m)\boldsymbol{H}$$

が成立する。式 (4.7) と比較すると,

$$\chi_m = \frac{\alpha}{1+\alpha}$$

が得られる。通常 α は正数なので、 $0 < \chi_m < 1$ が成立する。ただし、反磁性体と呼ばれる物 質では、 $-1 < \alpha < 0$ なる負数となり、 $\chi_m < 0$ が成立する。

線形応答する均質な材料中では、材料中に自由電流がない場合、 $\operatorname{div} H = 0$ となる。この結果、 $\operatorname{div} M = 0$ が成立する。つまり、磁化電流は材料中に現れず、材料表面にしか現れない。 例えば、 $\mathbf{24.6}$ に示すように、断面に対し、十分な長さを持つコイル中に置かれた磁性体の場合、対称性より、磁場も磁束密度も、インダクタの内部では、コイル円筒軸のほうを向くベク

図 4.6 コイル内に置かれた棒状の磁性体における磁化は、常磁性体では磁場の方向を向く。

トルとなる。自由電流はコイルの中にしか流れていないが,磁化電流は磁性体表面にのみ発生 する。コイルが十分長いと,コイルの外部の磁場は 0 となるので,自由電流と結び付いてい る H の大きさは,コイルの内部で自由電流の面密度 K_f と一致し, $H = K_f$ となる。方向は 図に示すようになる。この結果,磁性体のないコイル内の自由空間では $B/\mu_0 = H = K_f$ と なる。

一方,透磁率 μ の磁性体中では,比透磁率を $\mu_r = \mu/\mu_0$ として, $B/\mu_0 = \mu_r H = \mu_r K_f$ と, 自由空間中の B より強くなる。また,磁性体中の磁化は $M = B/\mu_0 - H = (\mu_r - 1)K_f$ となる。磁化電流は rot **M** で与えられるが, **M** は磁性体内で一定,空間では突然 0 となるため, 面状デルタ関数となる。つまり,磁性体表面で,面密度 $K_m = M = (\mu_r - 1)K_f$ の値を持ち, 自由電流と同じ方向となるベクトルとなる。

 K_f を固定して、 μ_r を大きくしていくと、Hは変化しないので、磁性体中のBはきわめて 大きくなる。このため、同じ自由電流に対し、きわめて大きな磁束を対応させることができ る。もし、自由電流を変化させると、大きな磁束変化が得られ、ファラデーの法則により、コ イル両端には大きな電圧変動が発生することになる。これが**インダクタ**(inductor)の原理で ある。

図に示したような構造では,磁性体の断面積を *S_m*,その他の空間の面積を *S_v*とすると,コ イルに囲まれた領域に存在する全磁束は次式のようになる。

$$\Phi = \mu_0 (\mu_r S_m + S_v) K_f = \mu_0 (\mu_r S_m + S_v) nI$$

図 4.7 永久磁石の内部磁場は、磁化と同じ方向に発生する。

ただし, *n* は単位長当たりの巻数, *I* は導線を流れる電流である。コイルはこの磁束を *N* 回巻 いているので, 導線に鎖交する磁束はこの *N* = *nl* 倍となる。

自由電流に対する全鎖交磁束の比を**インダクタンス**(inductance)と呼ぶ。この場合のイン ダクタンス *L* は,次式で与えられる。

$$L = \frac{N\Phi}{I} = \mu_0 (\mu_r S_m + S_v) n^2 l = \mu_0 (\mu_r S_m + S_v) \frac{N^2}{l}$$
(4.8)

 μ_r が大きいと, *L* がどんどん増えていくことが分かる。 $S_v \to 0$ の極限で考えると, *L* = $\mu_r \mu_0 S_m N^2 / l \propto \mu_r$ なので, *I*_f 一定ならば $\Phi \propto \mu_r$, また Φ 一定ならば *I*_f $\propto 1/\mu_r$ となる。

次に,図 4.7 に示す永久棒磁石を考えよう。永久磁石では,自由電流がなくても,磁化の存 在する物質である。M に対応して,棒磁石の側面に,磁化電流が流れる。この磁化電流が作 る磁場を考えると,磁化電流がソレノイドを形成しているので,まさにソレノイドの作る磁場 と一致する。棒の長さが十分長いと,外部磁場はほぼ0となるため,面電流密度 Kの磁化電 流に対応した磁場 $B/\mu_0 = K$ が,ソレノイド内部に作られる。

棒の長さが短くなってくると、外にも棒端から溢れた磁場が、ある程度、できるため、アン ペールの法則より、内部磁場は、その分、弱くなってくる。厳密な磁場の計算は、一見、困難 そうであるが、一様磁場 B/µ0 = K がソレノイドの端から端まで存在するとし、それに、両 端を発散源とした上下対称に発生する磁場を足せば、計算可能となる^{*3}。この辺の話は、本章

^{*&}lt;sup>3</sup> 永久磁石の両極に磁荷があるとして計算された磁場は,残念ながら簡単な関数とはならず,楕円関数の入った ものとなる。

(3.2)節で行った磁石と電流の等価性の議論と同じである。

電束密度 **D** と磁場強度 **H** を導入したときのマクスウェル方程式を,示しておこう。この うち二本は,すでに示したものである。

div
$$\boldsymbol{D} = \rho_f$$

rot $\boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$
div $\boldsymbol{B} = 0$
rot $\boldsymbol{H} = \boldsymbol{J}_f + \frac{\partial \boldsymbol{D}}{\partial t}$

4.4 E-H 対応 $(Q-Q_m)$

式(4.5)を利用して、物質のあるときの方程式の Bを H で書き換えてみよう。

div
$$\boldsymbol{E} = \frac{1}{\varepsilon_0} \rho$$
 (4.9)
rot $\boldsymbol{E} = \boldsymbol{J}_m - \mu_0 \frac{\partial \boldsymbol{H}}{\partial t}$
div $\boldsymbol{H} = \frac{1}{\mu_0} \rho_m$
rot $\boldsymbol{H} = \boldsymbol{J}_h + \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t}$ (4.10)

ただし、右辺は、 $P_m = \mu_0 M$ として、次のように定義する。

$$\rho = \rho_f + \rho_p, \qquad \rho_p = -\operatorname{div} \boldsymbol{P}$$

$$\boldsymbol{J}_m = -\frac{\partial \boldsymbol{P}_m}{\partial t}$$

$$\rho_m = -\operatorname{div} \boldsymbol{P}_m$$

$$\boldsymbol{J}_h = \boldsymbol{J}_f + \boldsymbol{J}_p, \qquad \boldsymbol{J}_P = \frac{\partial \boldsymbol{P}}{\partial t}$$

$$(4.12)$$

このうち、 J_m を磁流(magnetic current), ρ_m を磁荷(magnetic charge)と呼ぶ。 J_h に は特別な名称は付いていないが、Hと関係しているため、便宜的に h 電流と呼ぼう。

式 (4.9) から式 (4.10) を見ると、極めて対称性がよい。また、自由電荷 ρ_f および自由電流 J_f を除くと、式 (4.11) から式 (4.12) も極めて対称性がよい。ただし、これらの式で右側の式 は、式 (4.1) および式 (4.3) の再掲である。なお、h 電流 J_h は先に定義した全電流 J と、磁 化電流 J_M だけ異なることに注意が必要である。 電磁気学を作りあげた当初は、磁場の要因として電流は知られておらず、磁石の引斥力を説明するだけに導入されていた。それには電荷との類似性から磁荷が導入されたという経緯がある。さらに式の対称性のよさから、この E-H 対応と呼ばれる定式化が主流であった。 P_m は磁化の昔の定義である。現在は、磁気現象の成因はすべて電流であるとされていること、さらに、前節で述べた磁石が受ける力に問題があること、相対論的に問題があることなどから、本書で採用された E-B 対応の定式化が主流である。なお、E-H 対応では、 $D \ge B$ が対応する。このため、B はかって磁束密度(magnetic flux density) と呼ばれていたが、現在は単に磁場と呼ぶ。

4.5 静電磁場の計算

今迄,いくつかの静電磁場の例を示してきたが,これらの例は,ほとんど点対称,線対称といったきわめて対称性の高いものであった。対称性が高いと,静電場の場合にはガウスの法則が使えるし,静磁場の場合にはアンペールの法則が使える。しかし,一般の電磁場の解析は容易ではない。

それでは、与えられた条件での電磁場を計算するには、どの式をどのように使えばよいので あろうか。本節では、静的な電磁場の計算手法について説明する。静的であると、まず、時間 微分がすべて0となるので、マクスウェル方程式は、電場と磁場に関し、完全に独立となるの で、それぞれ独立に決定できることになる。

物質のない場合の電場計算,つまり,電荷が動くことなく独立に存在する場合には,電場は クーロンの法則を用いて電荷から決定できる。本書に示した少ない例では,ガウスの法則を 使って電界を求めているが,こうした作業ができるのは,電荷分布が球状,円柱状,平面状と いった対称性のよい場合だけである。一般の形状では,クーロンの法則の法則を使って,各電 荷の作る電場をコンピュータによって加算(積分)するしかない。磁場の場合も,対称性のよ い場合にはアンペールの法則が利用できるが,一般にはビオ・サバールの法則による各線分の 作る磁場を,コンピュータによって加算(積分)するしかない。

物質が存在すると、これらの計算は一層面倒となる。電場の場合には、導体と誘電体が関係 する。実は導体は誘電率が無限大の誘電体として扱うことができる。ただし、導体には電荷を 帯電させることができる。このため、正負の電気量の差が、導体全体で一定となるという条件 が成立する。一方、誘電体では、正負の電気量の差は0となる。いずれにせよ、対称性がよけ れば、ガウスの定理を利用できるが、一般の場合にはコンピュータを駆使せざるを得ない。

初期状態,つまり計算の前提としては,いくつかの導体上に決まった量の自由電荷が与えら れるか,いくつかの導体の電位が与えられるか,これらの複合であることが多い。しかし,電 位が与えられている場合でも,まず導体上に適当な量の自由電荷を仮定する。そして,クーロ ンの法則を利用して,全体の電場を計算する。この最初の計算結果では,導体内に電場が残っ たりする。

この計算の結果,導体の電位(どこか代表点の電位)が不適正の場合には,自由電荷を補 充/削減する。導体内で電場が残っている場合には,電場の方向へ,電荷移動を行う。また誘 電体で内部で電場がある場合には,それに比例して分極ベクトルを生成し,それによる分極電 荷を誘電体表面に生成する。そして,全電荷を使って,電場を再計算する。これを繰り返すこ とで,収束した結果が,求める静電場となる。この計算の仕方は,まさに,実際の電荷が移動 していって,静電場が確定する過程のシミュレーションそのものである。この他にも,いくつ かの手法が提案されているが,本質的には,ここに述べたものと同じ作業をしていると理解し てよいであろう。

磁場の場合には,導体上の自由電流が与えられている場合がほとんどであり,鎖交磁束が与 えられることはほとんどない。仮に鎖交磁束が与えられる場合でも,静電場のやり方に準じて 計算すればよい。自由電流が与えられるといっても,導体内の分布状況までが与えられること はないので,やはり,最初は,自由電流を導体内の適切な位置に仮定する。そして,ビオ・サ バールの法則を用いて,全体の磁場を計算する。

この計算の結果,導体内に磁場が残る場合は,ローレンツ力にしたがって,自由電流の位置 を導体内で移動する。また,磁性体の内部では,磁場に比例して磁化ベクトルを生成し,それ による磁化電流を磁性体表面に生成する。そして,全電流を使って,磁場を再計算する。これ を繰り返すことで,収束した結果が,求める静磁場となる。この計算の仕方は,まさに,実際 の電流が移動していって,静磁場が確定する過程のシミュレーションそのものである。

かって,コンピュータが身近になかったころは,色々手の込んだ複雑な電磁界解析の手法が 提案されたが,強力なコンピュータが身近に手に入るようになった現在,こうした計算は,ほ とんど,実際に起きている現象をシミュレーションすることで,成されるようになっている。

なお,これ以外の手法としては,電場,磁場の代わりに,スカラーポテンシャル,ベクトル ポテンシャルを計算する手法があるが,本質的には,ここに述べたものと,大きな変化はない。

4.6 自由電流を磁化で表現する

磁気モーメント M は元々小さな磁化電流が無数に流れている状態であるが,平滑化により 磁気モーメントの最外壁にだけ磁化電流が流れているというモデルにみなすことができた。さ て,磁化電流はループを作っているが,自由電流も給電系を含め,実はループを作っている。 したがって,自由電流も磁化電流と区別する必要がないかも知れない。磁化電流は比較的平面 に近い領域の縁を流れているが,自由電流は一般に自由な形の線路上を流れる。しかし,自由 な形の線路で囲まれた領域も小さく分割すれば平面的な形の集合にできるので,その小さな形 の磁化電流の集合とみなすことで,磁化電流とまったく同じ取り扱いができるはずである。

磁化の場合には、電流路に囲まれた領域にだけ M が存在し、B は磁化の有無に関らず連続

図 4.8 電流 I の作る M = IS/V。この大きさは M = I/l となる。 H は下面の $-Q_m$ へ吸い込まれる成分もあるので,分極中では大きく,外では小さくなる。

である。したがって,式 (4.5) より, *H* には *M* の不連続に対応した不連続が発生することに なる。図 4.8 に図 4.4 に対応した *M* と *H* の関係を示す。一般に,電流路で囲まれた領域の *H* は *M* と逆向きになり,外部では *M* および B/μ_0 と同方向となる。また,電流路で囲まれ た領域内では $M + H(\underline{0}) = B/\mu_0$ が成立し,外部では $H(\underline{1}) = B/\mu_0$ が成立する。この結 果, (4.6) の J_f は *M* に組み込むことができるため, (4.6) はさらに次式のように簡単になる。

$$\operatorname{rot} \boldsymbol{H} = rac{\partial \boldsymbol{D}}{\partial t}$$

分極電流にもっとも近い自由電流は平面的な環状電流である。円形の電流が考えやすい が、平面的でさえあれば任意の形状の電流ループが対象となる。この電流ループで囲まれた 領域内のみ M が存在し、上下面での M の不連続性が H の不連続性と相殺し、その結果 $B/\mu_0 = M + H$ により、 B/μ_0 の連続性が確保される。極限として、電流ループで囲まれた 領域を極めて薄い厚さ l の膜にしてしまうことも可能である。膜の表側に M = IS/V = I/lの磁荷があり、裏側に等量の負の磁荷があるとする。M は薄い膜内だけ、極めて大きな値と なる。一方、B は膜の上下で変化しないので、M の変化分は H の変化分となる。つまり、Hは膜を通過する際、I だけ変化することになる。

一つの電流ループに外部電源からの給電線が付いている場合は,電流ループの根本で一旦 ループを切り離すと分りがよい。給電区間は一つのループを成し,電流ループはもう一つの ループを成す。この場合,両方に等量の電流が流れているとすると,切離し部では二つの電流 はキャンセルするため,結局一つのループと同じことになる。それぞれのループにシャボン玉 のような膜を張り,その膜に *M* を置けば,二つの膜のいずれを通過しても *H* は *I* だけ変化 する。

それでは複数のコイルを巻いて作られたソレノイドのような構造はどう考えたらよいだろう か。その場合は図 4.9 のように、コイルを上下の給電箇所を結ぶ直線で切り分ける。すると各 コイルは出入口が縦に捻れた形の電流ループになる。一方、給電側のループはソレノイドの給 電箇所で一旦切れるが、各コイルの格段ごとに発生した捻れた出入口を辿って下の給電箇所ま

図 4.9 複数のコイルにより作られたソレノイドの分割。駆動電源が必要な場合は左の長方 形のループ内に置かれる。

で接続される。つまり、電源、上部給電部、下部給電部で囲まれる一つのループを構成する。 このループはコイルの作り出す磁場に対し、1/nの寄与しかない(n は巻数)ので、多くの場 合無視しても構わない。

実際の磁場の計算の場合には、このような取り扱いをすることは少ないが、このような事実 を知っていると、思わぬ時の発想の展開ができるので便利である。なお、このように自由電流 を磁化で置き換えできるのは、どちらも連続する電流から構成されているからである。これに 対し、電場では *P* は正負が相殺するのに対し、*ρ* は相殺するとは限らないので、自由電荷を分 極で置き換えることはできない。

第5章

ポテンシャル

電場・磁場の概念に付随して,ポテンシャルという概念が作られた。量子力学が開発された 現在では,むしろ,このポテンシャルのほうが本質的であり,電場・磁場は物質のサイズが大 きくなってきたときに見える平均的な場であると考えられている。本章ではまず,電場・磁場 の概念からポテンシャルの概念を導き出す。

5.1 スカラーポテンシャル

静電場の基本方程式は, div が電荷密度に比例するという式と, rot が 0 になるという式で ある。このうち,後者の rot が 0 になるということは,任意の閉曲線に沿った静電場の線積分 が 0 となることを意味している。閉曲線上に二点をとり,積分路を二分してみると,それぞれ の積分が互いに符号の反転した同じ値になることが分かる。片側の積分路を移動してみても, この事態は変わらず,しかも固定された積分は変化しないことから,その積分結果は前の結果 と等しくなる。以上の結果,二点間を結ぶ曲線に沿う静電場の線積分は,曲線の形によらず一 定になる。空間のある一点を基準として,各点までの静電場 *E* の線積分を実行し,それを符 号反転したものを,**静電ポテンシャル**(electro-static potential)という。

$$\phi = -\int_{\mathrm{C}} d\boldsymbol{r} \cdot \boldsymbol{E}$$

静電ポテンシャル φ は場所が決まると値が決まることから,第2章で述べたスカラー場の 一つであり,スカラーポテンシャル (scalar potential) ともいう。次の節でベクトルポテン シャルという概念を導入するが,それとの対比で,以後,スカラーポテンシャルと呼ぶことに する。上式を微小距離に対し適用すると,次式のようになる。

$$d\phi = -(E_x \, dx + E_y \, dy + E_z \, dz)$$

これと ϕ の全微分の式を比較することにより、 E_x などが得られる。

$$E_x = -\frac{\partial \phi}{\partial x}, \quad E_y = -\frac{\partial \phi}{\partial y}, \quad E_z = -\frac{\partial \phi}{\partial z}$$
 (5.1)

これは、スカラー場の勾配の概念 grad そのものである。

$$E = -\operatorname{grad}\phi$$

これらの式は, φ の分布から **E** の分布を求める際,有用である。 両辺の rot をとると,式 (5.1) を利用して,次式が得られる。

$$\operatorname{rot} \boldsymbol{E} = 0$$

つまり,スカラーポテンシャル φ を用いて表された *E* が回転のない場になることが理解でき よう。もともとスカラーポテンシャルは,このような回転のない場の rot が自動的に 0 になる よう導入された概念である。

スカラーポテンシャル ϕ で表された電場 E を,電場の div の式へ代入しよう。

$$\operatorname{div}(-\operatorname{grad}\phi) = \frac{1}{\varepsilon_0}\rho$$

div grad を計算すると、結局、次式が得られる。

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = \nabla^2 \phi = -\frac{1}{\varepsilon_0} \rho$$

この式は、ポアソンの式 (Poisson equation) と呼ばれている。

電荷分布 ρ が知られているときに、これからスカラーポテンシャル分布 φ を、直接求めるこ とも可能である。まず、点電荷 Q の作るスカラーポテンシャルを求める。点電荷の作る電場 は、クーロンの法則で与えられる 1/r² に比例する形である。これを適当な定点(無限遠点を 選択)を基準にして r まで積分する。

$$\phi = \frac{Q}{4\pi\varepsilon_0} \frac{1}{r}$$

これを**クーロンポテンシャル**(Coulomb potential)という。一般に 1/r に比例するポテン シャルを, **クーロン型ポテンシャル**(Coulomb type potential)という。

次に電荷分布 ρ の作るスカラーポテンシャルを考える。空間を賽の目に分割し,各微小体 積内の電荷の作るスカラーポテンシャルを考えると,上式の Q を dV ρ に置き直したものにな る。これを合計したものが,分布電荷の作るスカラーポテンシャルである。

$$\phi = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} dV \, \frac{\rho}{r}$$

ここで、当然のことながら、体積 V 以外には電荷のないことを仮定している。

なお、上式の $\rho \in \varepsilon_0 \operatorname{div} \boldsymbol{E}$ により置換した式により、電場分布から線積分でなく体積積分により電位を計算することができる。

$$\phi = \frac{1}{4\pi} \int_{\mathcal{V}} dV \, \frac{\operatorname{div} \boldsymbol{E}}{r}$$

さらに、 ϕ だけにした式は任意の ϕ に対する恒等式になる。

$$\phi = \frac{1}{4\pi} \int_{\mathcal{V}} dV \, \frac{\nabla^2 \phi}{r}$$

この式は特に**ポアソンの定理**(Poisson theorem)と呼ばれている。ここでも、V 以外では $\nabla^2 \phi = 0$ を仮定している。

5.2 ベクトルポテンシャル

静電磁場のマクスウェル方程式には,電荷や電流といった発生源を含まない式 (3.15) と (3.16)の二本があるが,これらを自動的に満たすようにできないかということで,ポテンシャ ルの概念が導入された。この際,利用する重要な事実として「rot が 0 となる場は,何らかの スカラー場の grad で表現できる」および「div が 0 となる場は,何らかのベクトル場の rot で 表現できる」がある。前節で示したスカラーポテンシャルは,この前者の例である。

まず,任意のベクトル場 X は次式のように書くことができる。

$$\boldsymbol{X} = -\operatorname{grad} \phi + \operatorname{rot} \boldsymbol{A} \tag{5.2}$$

この関係を**ヘルムホルツの定理**(Helmholtz theorem)という。 $rot(grad \phi) = 0$ なので「回転のない場はスカラーポテンシャルで記述できる」, div(rot A) = 0なので「発散のない場はスカラーポテンシャルで記述できる」と表現してもよい。

まず,任意のベクトル場 X を考えよう。これに対し,やや天下り的であるが,次のスカ ラー場とベクトル場を考える。

$$\phi = \frac{1}{4\pi} \int_{\mathcal{V}} dV \, \frac{\operatorname{div} \boldsymbol{X}}{r} \tag{5.3}$$

$$\boldsymbol{A} = (A_x, A_y, A_z) = \frac{1}{4\pi} \int_{\mathcal{V}} dV \, \frac{\operatorname{rot} \boldsymbol{X}}{r}$$
(5.4)

すると、次式が得られる。

$$-\operatorname{grad} \phi + \operatorname{rot} \boldsymbol{A} = \frac{1}{4\pi} \int_{V} dV \frac{-\operatorname{grad}(\operatorname{div} \boldsymbol{X}) + \operatorname{rot}(\operatorname{rot} \boldsymbol{X})}{r}$$
$$= -\frac{1}{4\pi} \int_{V} dV \frac{\nabla^{2} \boldsymbol{X}}{r} = \boldsymbol{X}$$

ここで、二番目の等号は rot rot が grad(div) – ∇^2 に変形できることを利用した。また、最後の等号は、*x*、*y*、*z* 各成分ごとにポアソンの定理を適用した。したがって、式 (5.3) と (5.4) を用いて、ヘルムホルツの定理が証明できたことになる。

ただし、ここではポアソンの定理を適用しているから、積分体積 V 以外では $\nabla^2 X = 0$ となることを前提としている。つまり、場の発生源はすべてこの体積 V 内に存在しているこ とを仮定している。場の発生源がこの体積外にも存在するときには、成立しない。例えば、 点電荷の作るクーロン電場を考える。ただし V としては、点電荷を除く領域を考えよう。そ こでは、div E = 0 と rot E = 0 が成立するが、同定理を形式的に適用すると、E = 0 が得 られる。それはもちろん間違っている。また、直線電流の作る磁場では、電流の位置を除く と、rot B = 0 が成立するので、B は何らかのスカラーポテンシャルの勾配になるはずであ るという主張を聞くことがあるが、これも同様な意味で間違っている^{*1}。

ヘルムホルツの定理で、 ϕ はスカラーポテンシャル、Aはベクトルポテンシャルと呼ばれる。これに以下の恒等式を加味する。

 $\operatorname{rot}(\operatorname{grad}\phi) = \mathbf{0}$

$\operatorname{div}(\operatorname{rot} \boldsymbol{A}) = 0$

これより,「任意のベクトル場は,スカラーポテンシャルの – grad で表される回転のない場 と,ベクトルポテンシャルの rot で表される発散のない場に分解できる」ということがいえる。 また,上には φ や *A* の具体的な求め方も示してある。ただ,φ や *A* の形にはかなりの自由度 があり,ここに示したのは単なる一例であることを了解しておいてほしい。

前節で説明したように,静電場は回転のない場であり,したがってスカラーポテンシャル −φの grad で与えられる。動電場は回転もある場であるから,若干の修正が必要となるが,そ の前に磁場について述べておこう。磁場は静磁場,動磁場を問わず div が 0 である。このこと は,磁場が何らかのベクトルポテンシャル *A* の rot で表現できることを意味している。

$$\boldsymbol{B} = \operatorname{rot} \boldsymbol{A} \tag{5.5}$$

また、この式からただちに次式が得られる。

$$\operatorname{div} \boldsymbol{B} = 0$$

これより,ベクトルポテンシャルを用いて表された磁場 **B** の div が,自動的に 0 となること が理解できよう。 **B** の分布から **A** の分布を求める一つの方法は、体積積分で行うのが一つのやり方である。 具体的には式 (5.2) で $\phi = 0$ として **X** を **B** と考える。すると式 (5.4) より、次式が得られる。

$$\boldsymbol{A} = \frac{1}{4\pi} \int_{\mathbf{V}} dV \, \frac{\operatorname{rot} \boldsymbol{B}}{r}$$

なお、ついでに、この式から次の二つの式が得られる。

$$A = \frac{\mu_0}{4\pi} \int_V dV \frac{J}{r}$$
$$A = \frac{1}{4\pi} \int_V dV \frac{\operatorname{rot}(\operatorname{rot} A)}{r}$$

もう一つの方法であるが、Eの分布から線積分を用いて、ほとんど自動的に ϕ の分布を求めたように、Bの局所的分布から計算できると便利である。それはさほど容易な仕事ではない。一つの理由は、BとAを結び付ける式の積分形にある。

$$\int_{\mathrm{S}} d\boldsymbol{S} \cdot \boldsymbol{B} = \oint_{\mathrm{C}} d\boldsymbol{r} \cdot \boldsymbol{A}$$

この式はベクトルポテンシャルの線積分が,その積分路に鎖交する磁束に一致するという重要 な法則を示しているが,右辺が線積分で与えられ,電場の場合のようにポテンシャルそのもの とならない点が問題である。もう一つの理由は,後に述べるように,Aに大きな自由度がある からである。しかし,局所的な磁場を積分してポテンシャルを求める手法は皆無ではない。

代表的なものを二つあげておく。まず,第一の手法は,いたるところで $A_z = 0$ と仮 定してしまうものである。すると,式 (5.5) より, $B_x = -\partial A_y/\partial z$ となるから,点 P で の $A_y = -\int dz B_x$ となる。この積分の経路は点 P の xy 面への垂線の足から点 P まで とする。また,この積分の際,積分定数は 0 と仮定してしまう。 A_x は, $B_y = \partial A_x/\partial z$ と $B_z = \partial A_y/\partial x - \partial A_x/\partial y$ を同時に満たす必要がある。前者から, $A_x = \int dz B_y + f(x,y)$ とな る。今度は z の偏微分で消え去ってしまう「 $x \ge y$ だけの関数」を後の調整のために残してお く。後者の式へ,いままでに得られた $A_x \ge A_y$ の式を代入すると, $B_z = B_z - B_z(0) - \partial f/\partial y$ が得られる。ただし,ここで div $\mathbf{B} = 0$ を利用した。また, $B_z(0)$ とは xy 面上での B_z の 値である。これより $f = -\int dy B_z(0)$ となる。この積分路は x 軸上の点から先に述べた点 P の足までである。

$$A_x = -\int_{(x,0,0)}^{(x,y,0)} dy \, B_z + \int_{(x,y,0)}^{(x,y,z)} dz \, B_y$$
$$A_y = -\int_{(x,y,0)}^{(x,y,z)} dz \, B_x$$
$$A_z = 0$$

これらの rot をとると B になることは容易に確かめられるであろう。

第二の手法は、同様な計算を極座標で行うものである。この場合、Aのr方向の成分を 0とする。極座標での rot や div の表現は複雑であるので、ここではその結果のみを示す。

$$\boldsymbol{A} = \frac{1}{r} \int_0^{\mathrm{P}} dr \, \boldsymbol{B} \times \boldsymbol{r}$$

なお,積分路は原点 O から点 P までの直線とする。 $w = 0, \dots, 1$ なる媒介変数として, r を (xw, yw, zw), dr を r dw と置き,上式の rot をとると,**B** になることが証明できる。

このように,ベクトルポテンシャルの決定にはかなりの自由度がある。これは, A の選び方に, div を自由に決めてよいという大きな自由度があるからであるが,それについては後の節で詳しく述べる。

5.3 動的な場のポテンシャル

一般的なベクトル場の考察にしたがえば, div も rot も 0 でない動的な電場は, スカラーポ テンシャルとベクトルポテンシャルの和で表される。しかし, スカラーポテンシャルだけで表 現できる静電場との差は磁場に関係しているので, これを利用する。まず磁場は動的な場合で も div が 0 であることから, ベクトルポテンシャル *A* の rot で表すことが可能である。

 $B = \operatorname{rot} A$

この式をマクスウェル方程式の rot E の式へ代入してみよう。

$$\operatorname{rot} \boldsymbol{E} = -\frac{\partial(\operatorname{rot} \boldsymbol{A})}{\partial t}$$

移項して rot をまとめると次式が得られる。

$$\operatorname{rot}\left(\boldsymbol{E}+\frac{\partial \boldsymbol{A}}{\partial t}\right)$$

rot が0のベクトル場はスカラー場の grad で与えられるから、これを – grad ϕ で表そう。

$$\boldsymbol{E} = -\operatorname{grad} \phi - \frac{\partial \boldsymbol{A}}{\partial t}$$

この式はマクスウェル方程式の rot E の式を自動的に満たすことになる。

次に,これらポテンシャルをマクスウェル方程式の div *E* 式および rot *B* 式と関連づけよう。これらの方程式には,場の源である電荷や電流が入っていることが特徴である。ポテンシャルで表現された電場と磁場をこれらの方程式に代入すると,ポテンシャルの満たすべき以下の方程式が得られる。

$$\nabla^2 \phi + \frac{\partial}{\partial t} \operatorname{div} \boldsymbol{A} = -\frac{1}{\varepsilon_0} \rho$$
(5.6)

$$\nabla^2 \boldsymbol{A} - \varepsilon_0 \mu_0 \frac{\partial^2 \boldsymbol{A}}{\partial t^2} - \operatorname{grad} \left(\operatorname{div} \boldsymbol{A} + \varepsilon_0 \mu_0 \frac{\partial \phi}{\partial t} \right) = -\mu_0 \boldsymbol{J}$$
(5.7)

次節において、これらの方程式の簡略化を行ってみよう。

5.4 **ゲージ**

先にも述べたように,ベクトルポテンシャルの決定にはかなりの自由度がある。これは, *A*の選び方に,その div を自由に決めてよいという大きな自由度があるからである。実際, div *A*は,次のような方法により,自由に変更することができる。

A'を次式のように定義してみよう。

$$A' = A + \operatorname{grad} \chi$$

両辺の回転をとると、 $rot(grad \chi) = 0$ だから、

$$\operatorname{rot} A' = \operatorname{rot} A$$

これより, A' は A と同じ磁場を与える別のベクトルポテンシャルとなっている。しかし, div A' は前とは同じ値にはならない。

$$\operatorname{div} \boldsymbol{A}' = \operatorname{div} \boldsymbol{A} + \nabla^2 \chi$$

したがって、 $\operatorname{div} \mathbf{A}'$ は、 χ の選び方により、自由に変更できることになる。

 χ を与えると,動的な場合,電場にも χ の影響があるので,電場のほうのつじつまも合わせ なければならない。そこで, A とともに ϕ も同時に変更するように約束しておけば,つじつ まが合うことになる。具体的には ϕ' を次にように変更すればよい。

$$\phi' = \phi - \frac{\partial \chi}{\partial t}$$

このように、 χ に関する自由度を利用すると、前節最後の二式を簡単にすることができる。 こうした χ の選び方を変えることを**ゲージ** (gauge) という。もともと、ゲージとは物差という 意味である。物の長さには物差のあて方でその値が変わることはないという普遍性を持ってい る。物理学の世界では、このように見方を変えることを**ゲージ変換** (gauge transformation) 、 見方を変えても値の変わらないことを**ゲージ不変性** (gauge invariance) などという。ベクト ルポテンシャルに grad χ を、スカラーポテンシャルに $-\partial\chi/\partial t$ を同時に与えることは、ゲー ジ変換であり、また、その結果、電場も磁場も変化しないことが、ゲージ不変性である。

5.4.1 **クーロンゲージ**

もっとも単純なゲージは、ベクトルポテンシャルを発散のないように選ぶものである。

 $\operatorname{div} \boldsymbol{A} = 0$

この結果、前節の二式は次のようになる。

$$\nabla^2 \phi = -\frac{1}{\varepsilon_0} \rho \tag{5.8}$$

$$\nabla^2 \mathbf{A} - \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J} + \varepsilon_0 \mu_0 \frac{\partial}{\partial t} \operatorname{grad} \phi$$
(5.9)

ー見して分かるように,第一式がきわめて簡単な形,静電場のときのポアソン方程式そのもの になっていて,**クーロンゲージ**(Coulomb gauge)と呼ばれる。電荷分布と電流分布が与えら れているときに,これらポテンシャルを求めるには,まず式 (5.8)を解いて ϕ を求め,次にこ の結果を式 (5.9) へ代入して *A* を求めるという手順となる。一見やさしそうであるが,ここで 得られた div *A* = 0 になるように調整しなければならない。

5.4.2 ファラデーゲージ

スカラーポテンシャルを0とするゲージを選ぶこともできる。つまり電場がベクトルポテ ンシャルの時間微分だけで決まるというゲージである。名前は知らないが、この関係は、も ともとファラデーの電磁誘導の式から導かれているので、本書では、仮に**ファラデーゲージ** (Faraday gauge) とでも呼んでおこう。

何らかのゲージで φ が計算できたとして、その後、次式を満たすように χ を選ぶのである。

$$\phi - \frac{\partial \chi}{\partial t} = 0$$

こうすると前節の二式は次のようになる。

$$\frac{\partial(\operatorname{div} \boldsymbol{A})}{\partial t} = -\frac{1}{\varepsilon_0}\rho \tag{5.10}$$

$$\nabla^2 \boldsymbol{A} - \varepsilon_0 \mu_0 \frac{\partial^2 \boldsymbol{A}}{\partial t^2} = \operatorname{grad}(\operatorname{div} \boldsymbol{A}) - \mu_0 \boldsymbol{J}$$
(5.11)

このゲージの可能性が示されたので、以後はゲージの変更ということではなく、直接これら 二式を解くこととなる。一見、A を定める式が二つあるので、大変そうであるが、まず、式 (5.10)を時間積分して、div A を求める。それを式 (5.11) 右辺に代入すると、式 (5.11) の右辺 は、電荷の時間積分と電流だけで決定されるので、実は A に関する源付き波動方程式になっ ている。この解のうち、式 (5.10) の条件を満たすものだけを採用することになる。

固定電荷があると, *A* がどんどん増加していってしまうので, どちらかというと, 直流解析 よりは交流解析に優れている。さらに, 電荷や電流のない空間の場合には, 右辺が 0 となる ため, 一定周波数における導波管や空洞共振器の計算に最適である。具体的計算は第 9 章に 示す。

5.4.3 **ローレンスゲージ**

もっと ϕ と A の対称性をよくする目的で導入されたのが、**ローレンスゲージ** (Lorenz gauge) *²である。これは div A を次のように選ぶ。

$$\operatorname{div} \boldsymbol{A} + \varepsilon_0 \mu_0 \frac{\partial \phi}{\partial t} = 0$$

これにより,式 (5.7)の grad の中を0 にしようという試みである。この式を**ローレンス条件** (Lorenz condition)という。この結果,式 (5.6)と式 (5.7)は次のようになる。

$$\nabla^2 \phi - \varepsilon_0 \mu_0 \frac{\partial^2 \phi}{\partial t^2} = -\frac{1}{\varepsilon_0} \rho$$
$$\nabla^2 \mathbf{A} - \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J}$$

明らかに ϕ と A の対称性はきわめてよい。対称性がよいばかりでなく、 ϕ と A が分離され ているので、方程式を解くのも容易である。しかし、当然のことながら、 ϕ と A はローレン ス条件を満たさなければならない。

一見,大変そうであるが,ローレンス条件は電流連続の式と酷似している。つまり,電流連続の式を満たす電荷と電流が同じ条件下で作り出すポテンシャルは自動的にローレンス条件を 満たすのである。ローレンスゲージは,後に述べるように,相対性原理ともきちんとした対応

^{*&}lt;sup>2</sup> Lorenz は昔はローレンツと読んでいたが, ローレンツ力やローレンツ変換の Lorentz ('t' の有無) と区別する ために, ローレンスとよぶ人が増えてきている。原語では何と読むのかは未確認である。私も長い間, 両者を 混同していて, 本書の初版も間違って表記されているが, 読者からご指摘いただいた。ここに感謝を表したい。

がとれており、今後特に断らない限り、ポテンシャルとしてはこのローレンスゲージを採用す るものとする。

これらの式の右辺を 0 と置いたものは,波動方程式(wave equation)と呼ばれる形をして おり, $A \approx \phi$ が次式で与えられる速さで伝播する解を持つことが知られている。

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

この *c* を計算してみると**光速**(light velocity)の値となる。詳細については後述するが、この ことから、マクスウェルは電磁波と光が周波数が異なるだけで同じものであることを推論し、 さらにその後、この推論が正しいことが数々の実験により裏付けられている。以後、必要に応 じ、 $\varepsilon_0\mu_0 \ge 1/c^2$ に置き換えるものとする。上記の三式を *c* を用いて書き換えておこう。

$$\operatorname{div} \boldsymbol{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t} = 0$$
$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -\frac{1}{\varepsilon_0} \rho$$
$$\nabla^2 \boldsymbol{A} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{A}}{\partial t^2} = -\mu_0 \boldsymbol{J}$$

これらの下二式を以後, **ポテンシャルの波動方程式**(wave equation of potentials)と呼ぼう。 なお, ゲージを定めると φ と A は一意に決まりそうであるが, そう簡単でもない。例えば 先に示した χ による項を加えたポテンシャルを考えよう。χ による補正を加えたら, ローレン スゲージではなくなりそうであるが, 新しいポテンシャルをローレンスゲージの式に代入して みると, 次式が得られる。

$$\nabla^2 \chi - \frac{1}{c^2} \frac{\partial^2 \chi}{\partial t^2} = 0$$

つまり,この式を満たす χ であれば,やはりローレンスゲージである別の解を作り出すことが できるのである。

ローレンスゲージでのポテンシャルの式は非常に対称性がよいが,ちょっとした書換えを行 うとさらに見た目の対称性もよくなる。

$$\operatorname{div} \boldsymbol{A} + \frac{\partial(\phi/c)}{\partial(ct)} = 0$$
$$\nabla^2(\phi/c) - \frac{\partial^2(\phi/c)}{\partial(ct)^2} = -\mu_0(c\rho)$$
$$\nabla^2 \boldsymbol{A} - \frac{\partial^2 \boldsymbol{A}}{\partial(ct)^2} = -\mu_0 \boldsymbol{J}$$

さらに,

$$E/c = -\operatorname{grad}(\phi/c) - \frac{\partial A}{\partial(ct)}$$

 $B = \operatorname{rot} A$

このようにすると, dx, dy, dz と d(ct), **A** と ϕ/c , **J** と $c\rho$, **B** と **E**/c のそれぞれの単位も同 じになるのである。こうした対応を知っていると, 相対性原理が読みやすくなる。

5.5 ポテンシャルと回路理論

ここで、回路理論における電流や電位の概念が、電磁気学とどのように関わっているかを述 べておこう^{*3}。回路理論には**キルヒホフの電流則**(Kirchhoff current law)(Kh-*I*)と**キルヒ ホフの電圧則**(Kirchhoff voltage law)(Kh- ϕ)が基本にある。Kh-*I* は、任意の点に流れ込 む電流の総和が 0 という法則である。 J_K をキルヒホフの電流の密度とすると、次式が成立 する。

$$\oint_{\mathbf{S}} d\boldsymbol{S} \cdot \boldsymbol{J}_K = 0$$

連続の条件は次のように書くこともできる。

$$\operatorname{div} \boldsymbol{J}_K = 0$$

ところが,動的な場合,電磁気学における電流の div は 0 とならない。明らかに異なる概念 である。一方,マクスウェル方程式の rot **B** 式の div をとってみると,変位電流を加えた電流 の div は 0 となっている。

$$oldsymbol{J}_K = oldsymbol{J} + arepsilon_0 rac{\partial oldsymbol{E}}{\partial t}$$

このことから、「回路理論における電流は変位電流を含む」と結論できる。

Kh- ϕ は、任意のループに沿って電位差を合計していくと0になるという法則である。キル ヒホフの電位差に対応する電場を E_K で表すと、次式が成立していることになる。

$$\oint_{\mathcal{C}} d\boldsymbol{r} \cdot \boldsymbol{E}_K = 0$$

微分形で表すと,次のように書ける。

$$\operatorname{rot} \boldsymbol{E}_K = 0$$

^{*3} この節は, 当時学生であった齋藤 宏文氏(現 宇宙開発研究機構名誉教授)の質問に対して考察したものである。

ところが、電磁気学における電場の rot は動的な場合、マクスウェル方程式の rot E 式より、 $-\partial B/\partial t$ であって 0 ではない。やはり、明らかに異なる概念である。そこでこの B を rot Aに置き換え、左辺に移動し、rot をまとめてみると、電磁気学的な電場に $\partial A/\partial t$ を加えたもの の rot は 0 となることが分かる。

$$oldsymbol{E}_K = oldsymbol{E} + rac{\partial oldsymbol{A}}{\partial t} = -\operatorname{grad} \phi$$

このことから,「回路理論における電場は,ベクトルポテンシャルを含む」こと,また「回路 理論における電位はスカラーポテンシャル *φ* そのものである」と結論できる。

第6章

磁場とベクトルポテンシャル

ベクトルポテンシャルは多くの書で,とかく小さく扱われがちであるが,この章では,大事 な概念であることを示すとともに,より直感的に理解できるように,いくつかの具体的な例を 示す。

6.1 静電場との相似性

前章でも述べたように、電荷密度 ρ はスカラーポテンシャルを作る。

$$\phi = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} dV \, \frac{\rho}{r}$$

面電荷(surface charge)の場合は面積分,線電荷(line charge)の場合は線積分,点電荷 (point charge)の場合はよく知られた積分のない $Q/4\pi\varepsilon_0 r$ の形になることはいうまでもない であろう。

同様に電流が源となってベクトルポテンシャルが発生するが、その様子は電荷がスカラーポ テンシャルを発生するのときわめて似ている。事実、ベクトルポテンシャルの式を三つの成分 に分けると、それぞれの式はスカラーポテンシャルの式と同じ形をしている。唯一異なるのは 1/ε₀ が μ₀ になっていること、また、源が単位体積当たりの電荷密度の代わりに単位面積当た りの**電流密度**(current density)になっていることである。このことから、源が電流密度の場 合は、それを電荷密度だと思って静電場の解を求め、その解の定数を変換すればよい。

この類推から,電流密度 J の作るベクトルポテンシャル(vector potential)を求めることができる。

$$\boldsymbol{A} = \frac{\mu_0}{4\pi} \int_{\mathcal{V}} dV \, \frac{\boldsymbol{J}}{r}$$

つまり, クーロン型ポテンシャル (Coulomb type potential) となっている。また, 電荷のと

きと同じように,面電流(surface current)の場合は面積分,線電流(line current)の場合は 線積分で与えられる。

上式から分かるように,微小電流の作るベクトルポテンシャルは,電流の方向と同じ向きを 向き,距離とともに減衰する場である。この基本的な概念をよく掴んでいると,電流分布から ベクトルポテンシャルの概略の分布が推定できるようになるので,以下の例で慣れていただき たい。

なお,上記積分をするというのがベクトルポテンシャルの原理的な計算法であるが,これか ら示すいくつかの問題のように,対称性のよい場合は,静電場の計算のように,ガウスの定理 を利用するのが便利なことが多い。

6.2 直線電流

z 軸に沿って流れている直線状の直流電流 I の作る磁場を考えてみよう。この磁場は,アンペールの周回積分の法則を用いて簡単に求めることができる。しかし,練習のために,ベクトルポテンシャルから計算してみよう。

電流ベクトルを *x*, *y*, *z* の三成分に分解してみると, 明らかに *z* 成分しか持たない。ベクトルポテンシャルの各成分は, 電流の対応成分からしか形成されないから, *A_z* しか誘起されない。

まず、1/r型のポテンシャルの積分という形で、 A_z を計算してみよう。観測点の座標を (x,y,z)とし、さらに $r = \sqrt{x^2 + y^2}$ とする。また発散を避けるために、電流路の長さを-LからLに限っておく。

$$A_{z} = \frac{\mu_{0}I}{4\pi} \int_{-L}^{L} dl \frac{1}{\sqrt{(l-z)^{2}+r^{2}}}$$

$$= \frac{\mu_{0}I}{4\pi} \log \left[\sqrt{(l-z)^{2}+r^{2}} + (l-z) \right] \Big|_{-L}^{L}$$

$$= \frac{\mu_{0}I}{4\pi} \log \frac{\sqrt{(L-z)^{2}+r^{2}} + (L-z)}{\sqrt{(L+z)^{2}+r^{2}} - (L+z)}$$

$$\stackrel{.}{=} \frac{\mu_{0}I}{2\pi} \log \frac{2(L-z) + r^{2}/2(L-z)}{r^{2}/2(L+z)}$$

$$\stackrel{.}{=} \frac{\mu_{0}I}{2\pi} \log \frac{2L}{r} = \frac{\mu_{0}I}{2\pi} \log \frac{2L}{r}$$

ここで,最初の近似では $L \pm z$ に対し r が十分小さいとして平方根を近似し,次の近似では, L に対し r や z が十分小さいとしている。

本来 *L* は ∞ であるべきであるが,こうすると解が発散してしまう。もともと,無限に長い 電荷では,発散するのは当然の結果である。しかし,無限大の電位ではいかんともできないの で、今後の議論は、*L* が十分大きいものとして、上式のままで進めていくものとする。ここで、 まず平方根を *L* + *z* に対し他の項が小さいものとして一次近似し、さらに *L* に対し *z* を無視 した。

上の式は,内積面積分の定理を利用すると,もっと簡単に求めることができる。電流の z 成 分は z 軸上だけに I の一定値を持つから,対応する電荷モデルは I の線電荷密度を持つ直線 状一様電荷となる。まず,これの作る電場を求める。

$$E = \frac{I}{2\pi\varepsilon_0} \frac{1}{r}$$

これを積分すると、スカラーポテンシャルが得られる。

$$\phi = \frac{I}{2\pi\varepsilon_0}\log\frac{a}{r}$$

この $\varepsilon_0 \rightarrow 1/\mu_0$ とすれば、ベクトルポテンシャル A_z が得られる。

$$A_z = \frac{\mu_0 I}{2\pi} \log \frac{a}{r}$$

ここで *a* は積分の際の基準点の原点から半径距離を表す。先に求めたものと比較すると, *a* が 2*L* になっているだけである。これは長さ 2*L* の線電流の作る場も,原点近傍では無限長線電 流の作る場とほとんど同じであり,その影響がおよそ 2*L* 程度の範囲に拡がっていることを示 している。いずれにせよ,ポテンシャルは微分して使われるので,*a* でも 2*L* でも,利用の際 は関係なくなる。

いうまでもなく, *A_x* も *A_y* も 0 であり, ベクトルポテンシャルは *z* 方向を向く。以上のこ とから, さきに述べたベクトルポテンシャルは電流源の方向を持ち, 遠方で減衰する形となる ことが理解できよう。

ベクトルポテンシャルの rot を計算すると、まわりにできる磁場 B を求めることができる。

$$B_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = -\frac{\mu_0 I}{2\pi} \frac{y}{r^2}$$
$$B_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} = \frac{\mu_0 I}{2\pi} \frac{x}{r^2}$$
$$B_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = 0$$

これをまとめてベクトル表現すると、次のようになる。

$$\boldsymbol{B} = \frac{\mu_0 I}{2\pi} \frac{\boldsymbol{k} \times \boldsymbol{r}}{r^2}$$

あたり前であるが,これはアンペールの法則から計算したものと一致する。計算したベクトル ポテンシャルと磁場の概要を図 6.1 に示す。

図 6.1 直線電流が作るベクトルポテンシャル(実線)と磁場(破線)の概要。

図 6.2 負に帯電した円柱と正に帯電した円柱を少しずらして重ねると、 ほぼ – sin θ に比 例した電荷分布が実現する。

6.3 ソレノイド

無限長のソレノイド(solenoid)を考えよう。ソレノイドは内部に軸方向の磁場が発生する が、外部には磁場がないのが特徴である。しかし、ベクトルポテンシャルは外部にも存在し、 それがゆえに外部のみに存在する超伝導体や量子力学的な荷電粒子の運動に影響を及ぼすとい う、ベクトルポテンシャルの有用性を示すもっともよい例となっている。

z軸方向に長軸を持つ半径 a の無限長円筒を考える。また、その表面を面電流が z軸右ネジ 方向に回転して流れている。単位長当たりの面電流密度を K とする。まず、電流の各成分を 求めてみよう。x 方向の成分は -y 方向で最大,+y 方向で負方向に最大となる。つまり、x軸 からの偏角を θ とすると、面電流密度の x 成分は $-K \sin \theta$ となる。同様に y 成分は $K \cos \theta$ となる。

ベクトルポテンシャルの x 成分は以上に示した -y 方向に正, +y 方向に負に帯電した円筒 の作る電位に対応する。線電荷の作る電位は前節に述べたように log で与えられるから,これ に $-\sin$ の重みを付けて積分すればよい訳であるが,この積分はかなり面倒である。そこで, ここではガウスの定理を利用する。図 6.2 に見られるように,まず,正に一様に帯電した円柱 と,負に一様に帯電した円柱を考える。これら二つの円柱の軸をぴったり重ね合わせると,何 も電荷がないのと同じことになるが,負の円柱を y 方向にほんの少しずらすと, +y 方向に負 電荷が,また -y 方向に正電荷が少しはみ出す。ずれがきわめて僅かであると,このはみ出し た電荷の分布は $-\sin\theta$ となる。

筝帯電した円柱の作る電位は、ガウスの定理を利用して簡単に計算することができる。例え

図 6.3 ソレノイドが作るベクトルポテンシャル(実線)と磁場(破線)の概要。

ば、正に帯電した円柱の作る円柱の内部と外部の電位は次式で与えられる。

$$\phi = \begin{cases} \frac{\rho}{4\varepsilon_0} (a^2 - r^2) & (r \leq a) \\ -\frac{a^2 \rho}{2\varepsilon_0} \log \frac{r}{a} & (r \geq a) \end{cases}$$

ここで ρ は電荷密度とする。

この結果を利用して正負両円柱の作るポテンシャルを計算する。観測点の座標を (*x*, *y*, *z*) とし、負円柱のずれ量を *d* とする。円柱の内部および外部の電位は次式のようになる。

$$\phi = \begin{cases} \frac{\rho}{4\varepsilon_0} \left[-(x^2 + y^2) + \left(x^2 + (y - \delta)^2\right) \right] & (r \leq a) \\ -\frac{a^2 \rho}{4\varepsilon_0} \left[\log \frac{x^2 + y^2}{a^2} - \log \frac{x^2 + (y - \delta)^2}{a^2} \right] & (r \geq a) \end{cases}$$

ここで、dがきわめて小さいとして一次の微小量をとることにし、また $\rho\delta/\varepsilon_0$ を $\mu_0 K$ と置き換え、さらに電位をベクトルポテンシャルに変換する。

$$A_{x} = \begin{cases} -\frac{\mu_{0}K}{2}y & (r \leq a) \\ -\frac{\mu_{0}K}{2}\frac{a^{2}y}{r^{2}} & (r \geq a) \end{cases}$$

同様に, x 方向にずれた正負の一様帯電円柱から次式が得られる。

$$A_{y} = \begin{cases} \frac{\mu_{0}K}{2} x & (r \leq a) \\ \frac{\mu_{0}K}{2} \frac{a^{2}x}{r^{2}} & (r \geq a) \end{cases}$$

図 6.3 に概形を示すように、ベクトルポテンシャルはやはり、電流と平行するように発生 し、かつ電流から遠ざかると減衰していくという一般的性質を持っている。また、ソレノイド の外部にもベクトルポテンシャルが存在することを記憶しておいてほしい。 上記の結果を利用し、 $B = \operatorname{rot} A$ により、磁場を計算してみると、よく知られた結果が得られる。

$$B = \begin{cases} (0 & 0 & \mu_0 K) & (r \leq a) \\ (0 & 0 & 0) & (r \geq a) \end{cases}$$

興味深いのはソレノイドの外部にはベクトルポテンシャルがあっても,磁場はまったくない ことである。これについては,後に改めて考察する。

6.4 微小電流ループ

微小電流ループ(micro current loop)の作る磁場も、ベクトルポテンシャルを用いると、 簡単に計算することができる。ループは平面的ではあるが、その形状は任意としよう。簡単化 のために、ループは *xy* 平面内の原点付近にあるものとする。流れている電流を *I* とし、まず、 電流の *x* 成分に着目する。すると電流と *x* 軸の角度を θ とするとき、 $-I \sin \theta$ となる。

この分布は、前節と同様に、ループに囲まれた形状を持つ正負の一様帯電板を、僅かにずら したもので実現することができる。面電荷密度を σ とし、負の帯電板を+y方向に δ ずらす と、大部分の領域では正負が中和するが、+y方向の縁には負電荷が、また-y方向の縁には 正電荷がはみ出す。 δ が十分小さければ、そのはみ出し量は $-\sigma\delta\sin\theta$ となり、 $\sigma\delta$ をIに対応 させればよいことが分かる。このことから-y方向に分極した電気モーメントが、面状に並ん でいると見なすことができる。まず、原点に置かれた電気モーメントの作る電位を求める。

$$\phi = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{\sqrt{x^2 + y^2 + z^2}} - \frac{1}{\sqrt{x^2 + (y - \delta)^2 + z^2}} \right) = -\frac{Q\delta}{4\pi\varepsilon_0} \frac{y}{r^3}$$

この値は,十分遠方から見ると,電気モーメントの位置が僅かにずれてもほとんど変わらない。そこで,これが面状に並んだ場合は,この*Q*を単に合計し,σ*S*に替えればよい。これから,微小ループの大きさに対し十分遠方での*A_x*を求めることができる。同様に*A_y*も得られる。

$$A_x = -\frac{\mu_0 IS}{4\pi} \frac{y}{r^3}$$
$$A_y = \frac{\mu_0 IS}{4\pi} \frac{x}{r^3}$$

あるいは、ベクトル表示は次のようになる。

$$\boldsymbol{A} = \frac{\mu_0 IS}{4\pi} \, \frac{\boldsymbol{k} \times \boldsymbol{r}}{r^3}$$

図 6.4 電位の異なる領域を通った電子ビームを合成すると、偏向する。

この場合も,電流がループ状に流れているため,ベクトルポテンシャルもループ状になって いる。なお,遠方でのベクトルポテンシャルは,電流とループの面積だけで与えられ,ループ の形状には依存しない。

磁場 B は、ベクトルポテンシャル A の rot をとればよい。

$$\boldsymbol{B} = \operatorname{rot} \boldsymbol{A} = \frac{\mu_0 IS}{4\pi} \operatorname{rot} \left(\frac{\boldsymbol{k} \times \boldsymbol{r}}{r^3} \right) = \frac{\mu_0 IS}{4\pi} \left[\boldsymbol{k} \left(\operatorname{div} \frac{\boldsymbol{r}}{r^3} \right) - (\boldsymbol{k} \cdot \nabla) \frac{\boldsymbol{r}}{r^3} \right]$$
$$= \frac{\mu_0 IS}{4\pi} \left[\boldsymbol{k} \delta(\boldsymbol{r}) + \frac{3(\boldsymbol{k} \cdot \boldsymbol{r}) \, \boldsymbol{r} - \boldsymbol{k} r^2}{r^5} \right]$$

この式の結果は第3章で導き出した (3.14)の $m = I \Delta S' k$ としたものと一致する。

6.5 ベクトルポテンシャルは実在する場か

無限長のソレノイドの外部の磁場は0である。ここには本当に何もないのであろうか。光の ニスリットによる干渉実験のように,電子ビームを二つのスリットを通し,それぞれがソレノ イドのまわりを通るようにしてから合成すると,合成後のビームは元の方向から偏向した方向 に進むことが知られている。この現象を **AB 効果**(Aharanov-Bohm effect)と呼ぶ。もちろ ん,一本のビームのまま,磁場の存在するところを通っても,ローレンツ力を感じて偏向する が,AB 効果の結果も,ほぼ同じだけの偏向を受ける。ソレノイドのまわりには磁場がないは ずなので,これはベクトルポテンシャルを感じて偏向するとしか,考えられない。

実は同じようなことが、スカラーポテンシャルでも観測できる。図 6.4 に示すように、ス リットで分岐された二つの電子ビームを、それぞれ一様ではあるが互いに異なる電位を持 つ領域を通過させてから合成すると、やはり偏向するのである。その偏向角は、電位差を二 本のビーム間隔で割った値の電場中を通過した場合と、ほぼ一致する。まず、電子の電荷を *Q* = -e としよう。電子の場合 *Q* は負であるが、以下の議論は電荷の正負に依存しないので、 符号が面倒な場合には、正電荷の粒子の議論と思ってもらってももちろん構わない。

これらの現象は量子力学でしか理解できない。量子力学によると、電子ビームは波動的性質 を持っており、その波の位相角は電磁場中で、電磁場のない場合に比較して次の量だけ増加す ることが知られている。

$$\frac{Q}{\hbar} \int (d\boldsymbol{r} \cdot \boldsymbol{A} - dt \,\phi) \tag{6.1}$$

ここで積分は荷電粒子の移動距離と経過時間に対して行う。

この式を利用すると,スカラーポテンシャルのみが存在する場合の電子ビームの偏向角は次 のようになる。

$$\tan\theta = -QL\Delta\phi/mv_0^2d$$

ただし,*L*はスリットの直後に置かれたポテンシャルの異なる領域の長さ,*d*はスリットの間 隔,*v*₀はスリット手前での電子の速度である。このように,偏向角は二つのビームの通過する 領域のポテンシャル差だけで決定される。つまり,電場がなくても,ポテンシャル差があるだ けで偏向するのである。

スリット通過後, τ の時間,一定のスカラーポテンシャルのところを通過すると,量子力 学的位相は $-Q\phi\tau/\hbar$ だけ増加する。一方,電子ビームの波長は,運動量をp,角波数をkと すると、ド・ブロイの関係 (De Broglie relation)より $p = \hbar k$ なので, $mv_0 = 2\pi\hbar/\lambda$ となり $\lambda = 2\pi\hbar/mv_0$ となる。これより両ビームの波頭の位置は $-(Q\Delta\phi\tau/2\pi\hbar)\lambda = -QL\Delta\phi/mv_0^2$ だけずれることになる。十分遠方で,合成されたビームはこの波頭の揃う方向で強め合い, あたかもそちらへ曲げられたように振るまう。その方向はビーム間隔 d で波頭の位置の差だ け振られるので,偏向角は tan $\theta = -QL\Delta\phi/mv_0^2 d$ となり,上記の結果と一致する。

一方、一様電場中の荷電粒子が受ける古典的力は *QE* であるが、この結果加速度は *QE/m* となる。長さ *L* の区間の滞在時間は *L/v*₀ であるから、最終的には進行方向直角に *QLE/mv*₀ の速度を得る。偏向角でいうと $\tan \theta = QLE/mv_0^2$ となる。これと量子力学の結果を比較す ると、*Ed* と $-\Delta \phi$ が対応していることが分かる。念のために、一様電場中の偏向角を量子力 学的位相ずれから計算してみても、同じ結果が得られる。

電場 **E** の方向を x 軸とすると $\phi = -Ex$ となる。またビームは x 方向にある程度拡 がっているとする。式 (6.1) より、これから位相遅延は $QEx\tau/\hbar$ となる。つまり x 方向の単 位長当たり $QE\tau/\hbar$ の遅延増加があることになる。波頭の位置ずれに換算すると QLE/mv_0^2 あることになる。これから偏向角は sin $\theta = QLE/mv_0^2$ となる。

次に図 6.5 に見られるように、ソレノイドのまわりを通過する二本の電子ビームの干渉を調 べ、ベクトルポテンシャルの影響を求めると、電場のときと同様にして、Φをソレノイド内の 全磁束として、偏向角が次のように得られる。

$$\sin\theta = \frac{Q\Phi}{mv_0 d}$$

図 6.5 ベクトルポテンシャルの異なる領域を通った電子ビームを合成すると、偏向する。

ベクトルポテンシャルのみが存在する場合には、二本のビームの位相差は、式(6.1)より $(Q/\hbar)\int d\mathbf{r}\cdot\mathbf{A}$ となる。この場合、積分路は両方のビームの通過場所となるが、ほぼソレノイドの周辺一周と考えてもよい。その場合、上記の積分はソレノイド内部の全磁束となるので、位相差は $(Q/\hbar)\Phi$ となる。これを 2π で割り、波長 $\lambda = 2\pi\hbar/mv_0$ を掛けると、波頭のずれ $Q\Phi/mv_0$ が得られる。これを d で割ると、偏向角 $\tan\theta = Q\Phi/mv_0 d$ が得られる。

一方,一様磁場中の荷電粒子が受ける古典的力は Qv_0B であるが,この結果,加速度は Qv_0B/m となる。長さ L の区間の滞在時間は L/v_0 であるから,最終的には進行方向直角に QLB/m の速度を得る。偏向角でいうと $\tan \theta = QLB/mv_0$ となる。これと量子力学の結果 を比較すると, BLd と Φ が対応していることが分かる。つまり,二本のビームと磁場の存在 領域で囲まれた全磁束が,量子力学の場合にはソレノイド内の全磁束に対応している。念のた めに,一様磁場中の偏向角を量子力学的位相ずれから計算してみても,同じ結果が得られる。

この計算は一様電場中の電子の波動の計算と同様なので,省略する。なお,上記の議論で, 量子力学の計算では放物線軌道で,一方,一様磁場の場合には円軌道のはずであるが,それは 二次までの近似で計算しているためである。厳密には双方とも円軌道となる。

このように,量子力学まで立ち入ると,荷電粒子は,スカラーポテンシャルやベクトルポテ ンシャルを感じて,運動を行っており,ローレンツ力は,電場や磁場がかなりゆっくり変動し ているときの近似であることが理解できよう。

6.6 ファラデーの電磁誘導の法則

ファラデーの法則(Faraday law)にも不思議な現象が発生する。ソレノイドに流れる電流 を変えてその作る磁場を変化させてみると、そのまわりに電場が発生するというものである。 しかし、ソレノイドの外には何の磁場もないのに、ソレノイドの外部にも電場が発生するので ある。つまり、磁場のない外から内部の変化が分かるのである。

ここで,重要な式を一つ誘導しておこう。磁場とベクトルポテンシャルは回転により結び付 けられている。

$B = \operatorname{rot} A$

この両辺を任意の閉曲線に沿って線積分すると、次式の関係が得られる。

$$\oint_{\mathbf{C}} d\boldsymbol{r} \cdot \boldsymbol{A} = \int d\boldsymbol{S} \cdot \boldsymbol{B} = \Phi$$

つまり,ベクトルポテンシャルを感じることにより,その閉曲線に鎖交している全磁束を知る ことができるのである。

電磁誘導の場合も、外部に存在するベクトルポテンシャルが変化するから、

$$E = -\frac{\partial A}{\partial t}$$

の式にしたがう電場が観測されると考えれば理解しやすい。念のため,この両辺を任意の閉曲 線に沿って線積分すると

$$\oint_{\mathbf{C}} d\boldsymbol{r} \cdot \boldsymbol{E} = -\frac{\partial}{\partial t} \oint_{\mathbf{C}} d\boldsymbol{r} \cdot \boldsymbol{A} = -\frac{\partial}{\partial t} \int d\boldsymbol{S} \cdot \boldsymbol{B} = -\frac{\partial \Phi}{\partial t}$$

となり,ファラデーの法則が誘導できる。これらの式は,磁場の存在しない外部だけでなく, 磁場の存在する内部でも成立する。ファラデーの法則では電場の周回積分や回転しか得られな いのに対し,ベクトルポテンシャルを用いると,各点における誘導電場が直接計算できるので ある。

なお,磁場中にある導体を動かしていくと,導体上に起電力が発生する。これは,導体の中 にある電荷に磁場に起因するローレンツ力が働き,電荷が移動していき,導体に偏在するよう になる。このため,電場が発生するが,結局,磁場による力と電場による力とが平衡するとこ ろで電荷の移動は停止する。つまり,次式が成立する。

$$F = q(E + v \times B) = 0$$

これから、導体移動に伴う起電力は次式で与えられる。

$$oldsymbol{E} = -oldsymbol{v} imes oldsymbol{B}$$

この電場に基づく電位差は誘導起電力(induced electromotive force)と呼ばれ,発電機の原 理となっている。この原理もベクトルポテンシャルを使っても,説明できるのであるが,相対 性原理を知ってからのほうが説明が楽なので,ここではこれ以上の説明を省略する。

ソレノイドのまわりに別のコイルを巻くと、図 6.6 のように、変成器(transformer)を作 ることができる。内側のコイルを一次コイル、外側のコイルを二次コイルと呼ぼう。この場合 でも、二次コイルの存在するところには磁場がなくても、二次コイルは、ベクトルポテンシャ ルを介して、一次コイルの作る磁場を感じることができる。特に鉄心があると、磁場はほとん ど鉄心中を通過するので、ベクトルポテンシャルの考えを抜きにしては、両者の結合を理解す

図 6.6 変成器の構成。

ることは不可能である。しかし,結果だけ見ると,ファラデーの法則と一致し,鎖交する磁束 の影響が現れることになる。

本物の変成器は有限長であり、かつ鉄心を用いることが多いが、ここでは、議論を簡単にするため、無限長のコイルの長さ l 部分だけを考える。一次コイルの単位長当たりの巻数を n_1 とし、そこに I_1 の電流が流れているとし、二次側も同様とする。面電流密度は $K_1 = n_1 I_1$ 、および $K_2 = n_2 I_2$ となる。

さて、二つのコイルの面電流密度が K_1 、 K_2 であると、重ね合わせの理より、一次コイ ルの内側には K_1 、 K_2 の影響が、また一次コイルと二次コイルの間には K_2 のみ影響が現 れる。そこで、一次コイルには、 $\Phi = \mu_0(K_1 + K_2)S_1$ の磁束が通過し、二次コイルには $\Phi' = \mu_0(K_1S_1 + K_2S_2)$ の磁束が通過していることになる。面電流密度を電流に置き換え、さ らに、式 (4.8) に示したように、全鎖交磁束は、これらの巻数倍 ($N_1 = n_1l$, $N_2 = n_2l$)であ ることに着目すると、次式が得られる。

$$\Phi_1 = N_1 \Phi = \mu_0 N_1 (S_1 K_1 + S_1 K_2) = (\mu_0 S_1 n_1^2 l) I_1 + (\mu_0 S_1 n_1 n_2 l) I_2$$

$$\Phi_2 = N_2 \Phi' = \mu_0 N_2 (S_1 K_1 + S_2 K_2) = (\mu_0 S_1 n_1 n_2 l) I_1 + (\mu_0 S_2 n_2^2 l) I_2$$

ここで、四つの比例係数を L₁, M, M, L₂ と書き直すと次式となる。

$$N_1 \Phi_1 = L_1 I_1 + M I_2$$
$$N_2 \Phi_2 = M I_1 + L_2 I_2$$

このうち, L_1 , L_2 を自己インダクタンス (self-inductance), M を相互インダクタンス (mutual-inductance) と呼ぶ。

6.7 ベクトルポテンシャルの測定

変成器の二次コイルを開放にすると、*I*₂ = 0 なので、*N*₂Φ₂ = μ₀*N*₂*K*₁*S*₁ の時間微分に相 当する電位差が誘起される。これは、一次コイルの作る磁束の*N*₂ 倍である。つまり、磁束と 触らない二次コイルを使って、一次コイルの作る磁束を測定することができるということにな る。しかし、厳密にいうと、磁束の時間微分が測定可能なのである。磁束が変化すれば、電場 が発生し、それを測定しているともいえる。実際、通常の導線を使った変成器の二次コイルで は、コイル自身の持つ抵抗のため、高速で変化する一次側磁束の変化は測定できても、ゆっく りした磁束の変化は測定できず、まして、一次側の直流磁束はまったく測定できない。ファラ デーの法則から考えると、まわりに発生する電場は、磁束の時間微分に比例するので、当然の 結果ともいえる。しかし、二次側に超伝導体のコイルを使うと、磁束そのものを測定すること が可能である。

$$\int_{-\infty}^{t} dt \left(\int_{\mathcal{C}} d\boldsymbol{r} \cdot \boldsymbol{E} \right) = \int d\boldsymbol{S} \cdot \boldsymbol{B}$$

ここには何ら積分定数的な自由度が入っていないことが検証できる。つまり,ファラデーの法 則以上のことが成立しているのである。しかも,超伝導体は,磁場のないところを通っていて も構わず,まさにベクトルポテンシャルの影響を直接観測しているのである。

$$\int_{-\infty}^{t} dt \left(\int_{C} d\boldsymbol{r} \cdot \boldsymbol{E} \right) = \int_{C} d\boldsymbol{r} \cdot \boldsymbol{A}$$

もう一歩進んで,上式の線積分記号を外す,あるいはファラデーの法則を時間で積分する と,次式が得られる。

$$\int_{-\infty}^{t} dt \, \boldsymbol{E} = \boldsymbol{A}$$

つまり、磁場の発生する以前より、各点に電場測定装置を置いて、電場の時間積分を行えば、 ベクトルポテンシャルを一意に決定できることになる。あるいは、ベクトルポテンシャルの まったくないところから、電場測定装置を移動してきて、その間の電場の変化を時間積分して もよい。著者はこれでベクトルポテンシャルが直接計測できると信じているのであるが、こう したことの書かれた書をあまり見たことがない。もしかすると、ベクトルポテンシャルに種々 の選び方があるのを心配しているのかも知れないが、少なくとも矛盾ない一つの解を測定でき ることはいうまでもないであろう。ただし、スカラーポテンシャルが共存すると、その分離は 容易ではなくなるというか、ゲージの自由度があるため、原理的に分離ができない。

第7章

カとエネルギー

カはローレンツ力だけ理解していれば,かなりのことがわかる。しかし,力に関するパラ ドックスは多く,それだけ,きちんとした理解が難しいということになる。少しでも深い理解 に心掛けてほしい。

なお,本章で用いる検電荷,検電流側と場を作る側の変数についてコメントしておこう。q, *i*, *r*', *m*' などは検電荷,検電流側,*Q*, *I*, *r*, *m* などは場の側である。

7.1 ローレンツカと磁石に働く力

電荷や物質に働く力は結局は次式で与えられるローレンツ力(Lorentz force)に帰着する。

$$F = q(E + v \times B)$$
 (移動電荷に働く電磁力) (7.1)

これは電荷 1 個が移動している時の力なので,電流のように動いている電荷の集合体が受ける力はこの式から誘導しておくのがよいだろう。単位長当り平均的に n の密度で電荷が分布しているとする。各電荷が B から受ける力は上式で与えられる。今 $\Delta r'$ の長さにだけ電荷が一様に分布しているとすると,全部で $n\Delta r'F$ の力が働くことになる。一方,Qnv = i なので,

$$F = i \Delta r' \times B$$
 (電流に働く磁場力) (7.2)

となる。ただし、 Δr の方向に v が向いていることを利用している。この式を利用して、電流 素片 $I\Delta r$ の作る磁場 (3.9) の中に置かれた別の電流素片 $i\Delta r'$ の受けるビオ・サバールの法則 (Biot-Savart law)に基づく力が簡単に得られる。

$$m{F} = rac{\mu_0}{4\pi} rac{i\Deltam{r}' imes (I\Deltam{r} imes m{r})}{r^3}$$

図 7.1 磁場による力は破線で示す力線垂直面に沿って働く。

電流間の力を計算するには、微小ループ間の力を積分するよりは、この式に従って計算する方 がずっと楽である。

(7.1)を見ると、電場による力は、Eの方向に働くので、電気力線を描いておくと、力の方向が見やすくなる。一方、(7.2)によると磁場による力はBと垂直になるので、磁場の力線に垂直な面を描いておくほうが、見やすくなる。つまり、 $i\Delta r'$ と垂直で、かつ力線に垂直面の方向の力を受ける。例えば、 $\mathbf{27.1}$ に示すように、二つのソレノイドや磁石が同軸に置かれ、かつ N 極と S 極が対向している場合、その先端に働く力は、おおよそ軸に対して垂直方向に拡がり、わずかに相手のほうに傾斜する。このわずかな傾斜のため、互いに引力を及ぼすこととなる。同種の極が対向している場合には、力の方向は $\mathbf{27.1}$ と反対になるため、やはりわずかな傾斜により、互いに斥力を及ぼすことになる。

しかし,例えばちょっと複雑な形状に磁石に働く力を求めようとすると,いつもこのように $v \times B$ から計算するのはかなり面倒である。磁石に働く力などは,むしろ磁荷モデルによるほうが楽である。

そこで,磁石の受ける力の計算などに便利な変形を試みよう。まず微小電流ループに働く力 を求めよう。式 (2.12) を利用して上式を変形すると,次式が得られる。

$$F = i \int d\mathbf{r}' \times \mathbf{B} = -i(\mathbf{S}' \times \nabla) \times \mathbf{B} = -(\mathbf{m}' \times \nabla) \times \mathbf{B}$$

ここで、m' = iS'は磁気モーメントと呼ばれる量である。

一方,磁石に働く力を計算する方法として,磁荷 q_m による方法がある。磁荷モデルのとき に、各磁荷に働く力は $F = q_m B/\mu_0$ で与えられるから、

$$oldsymbol{F}_m = rac{q_m}{\mu_0} \left(oldsymbol{B}(oldsymbol{r}+oldsymbol{l}') - oldsymbol{B}(oldsymbol{r})
ight) = (oldsymbol{m}'\cdot
abla)oldsymbol{B}$$

ただし、以下の関係を利用した。

$$m' = iS' = \frac{q_m}{\mu_0}l'$$

これら二つの力は等しそうであるが、実は若干異なる。これら二つの差をとってみよう。
$$(\mathbf{F} - \mathbf{F}_m)_x = \left(m'_z \frac{\partial}{\partial x} - m'_x \frac{\partial}{\partial z} \right) B_z - \left(m'_x \frac{\partial}{\partial y} - m'_y \frac{\partial}{\partial x} \right) B_y$$
$$- \left(m'_x \frac{\partial}{\partial x} + m'_y \frac{\partial}{\partial y} + m'_z \frac{\partial}{\partial z} \right) B_x$$
$$= - m'_x \operatorname{div} \mathbf{B} + m'_y (\operatorname{rot} \mathbf{B})_z - m'_z (\operatorname{rot} \mathbf{B})_y$$
$$= (\mathbf{m}' \times \operatorname{rot} \mathbf{B})_x$$

したがって

 $F = F_m + m' imes \operatorname{rot} B$

rot *B* は,磁場を形成している電流のないところでは 0 なので,両者は一致する。ただし, rot *B* が 0 でないところ,つまり,磁場を形成している電流の流れている部分,あるいは磁荷 モデルであれば組になった NS 磁極の間では両者に違いが生じる。つまり *m*'の存在する場所 以外では両力は一致する。

また、力を検出する微小磁石の傍に、磁場を形成している電流や変位電流が流れていると両 者は等しくなくなる。現在、磁石の根源は電流であることが分かっているので、磁荷モデル はこの時点で、問題を生じる^{*1}。つまり、電流や磁石に働く力を磁荷モデルで計算した場合に は、 $m' \times \operatorname{rot} B$ を加える必要があることになる。

7.2 古典的力と量子論的力

古典的粒子の受ける力は、ローレンツ力で示したように、電場 *E* と磁場 *B* により、簡明に 理解できるが、一方で、量子力学的粒子はスカラーポテンシャルやベクトルポテンシャルを感 じると説明した。

これら二つの古典力学と量子力学の双方の効果を、一気に説明する手法がある。それは付録 D に示した最小作用の原理(principle of minimum action)と呼ばれる手法である。もとも とは、束縛力のあるような複雑な力学系の問題を解くために、ラグランジェが発展させた解析 力学と呼ばれる手法の一つの表現形であるが、

$$L = \frac{1}{2}m\left(v_x^2 + v_y^2 + v_z^2\right) - q\left(\phi - v_xA_x - v_yA_y - v_zA_z\right)$$

と定義して、この値を種々の軌道を仮定して時間積分する。

$$S(x(t)) = \int_{t_0}^{t_1} dt \ L(x(t), \dot{x}(t))$$

^{*&}lt;sup>1</sup> 11.12 節に, 例を示す。

図 7.2 ベクトルポテンシャルの異なる領域を通る二つのビームの干渉縞は移動する。

この積分を作用(action)と呼ぶ。実際の運動は、作用が最小になるような軌道を選ぶという ものである。

さて古典力学の場合には、軌道を少し動かしても、この値がほとんど変わらない付近に軌道 が選ばれる。一方、量子力学の場合には、異なる複数の軌道に対し、この積分の値が同じ値と なるときに、強い干渉が起こることになる。例えば、図 7.2 にあるように、板状のソレノイド の上下を通る電子ビームを考えよう。ソレノイドの作る磁場の方向を z 軸、ビームの進行方向 を x 方向、ソレノイドの板の面に垂直な方向を y 方向としよう。板状のソレノイドのまわり にはベクトルポテンシャルが誘起されるが、その方向は主として x 方向である。板の端では y 方向のポテンシャルも存在するが、その領域は端付近に限られているので、この議論では無視 しよう。

試しの軌道として x 方向にソレノイドの上を通る直線と、下を通る直線の二種類を仮定し、 それぞれのビームの作用を計算してみよう。まず、上のベクトルポテンシャルが $-\Delta A_x$ だっ たとしよう。また、そこでは速度がベクトルポテンシャルのなかったときに比較し、 $v_0 + \Delta v$ になったとしよう。すると作用積分は次のようになる。

$$S = \int_{t_0}^{t_1} dt \left[\frac{1}{2} m (v_0 + \Delta v)^2 + q (v_0 + \Delta v) (-\Delta A_x) \right]$$

=
$$\int_{t_0}^{t_1} dt \left[\frac{1}{2} m v_0^2 + v_0 (m \Delta v - q \Delta A_x) + O^2 \right]$$

同様に、下を通ったときの作用積分は、上式の括弧内が $(m\Delta v + q\Delta A_x)$ と置き換わる。

これらが同じ値となる条件を考えてみよう。そのためには上の軌道では $\Delta v = (q/m)\Delta A_x$ とし、下の軌道では $\Delta v = -(q/m)\Delta A_x$ としなければならない。つまり、上の軌道ではやや 早目、下の軌道ではやや遅目に動くことになる。ベクトルポテンシャルの存在領域の長さ *l*、 スリット間隔 *d* とすると、下の軌道の粒子がスリットに到着したとき、上の軌道の粒子はス リットを通り越して、 $l(2\Delta v/v_0) = 2lq\Delta A_x/mv_0$ だけ先に居ることになる。これら二つの軌 道を通る粒子がゴールのスクリーンに同時に到着するには、スリットを出てから下方斜めの方 向に動くしかない。その振れ角を*θ*とすると、

$$\sin \theta = \frac{2lq\Delta A_x}{mv_0 d} = \frac{q\Phi}{mv_0 d}$$

となり、前出の結果と一致する。

このように、古典力学の運動は量子力学で説明できるが、ポテンシャルが空間的にあまり激 しく変化すると、ビームは広い範囲に拡がってしまい、古典力学で扱う粒子のようなイメージ を持たなくなる。つまり、古典力学の粒子を扱うには、ポテンシャルは緩やかに変化している 必要がある。このような条件で粒子の受ける軌道変化を計算すると、結局、運動はポテンシャ ルの一次変化にだけ依存するようになり、ローレンツ力の与える式になってしまう。つまり、 力という概念を議論しようとすると、どうしても古典的近似になり、電場、磁場だけが現れ、 ポテンシャルは現れなくなってしまうのである。したがって、本章では、以後、マクロに観察 されるローレンツ力を使った話を行う。

7.3 電気エネルギー

キャパシタに電荷を溜めていく過程を考えよう。キャパシタを充電するには、負極側より正 電荷を取り出し、正極側に運ぶ必要がある。ところが、充電が進んでくると、正極側は負極側 に対し電位が上がってくるため、この電位差に逆らって、電荷を運ぶのにエネルギーを要する ようになってくる。電位差が ϕ のときに δq の電荷を運ぶには、 $\delta q \phi$ のエネルギーを使う必要 がある。キャパシタンスを C とすると、 $\phi = q/C$ が成立するので、q だけの電荷を充電する ために外部が使うエネルギー U は次式のようになる。

$$U = \int_0^q dq \,\phi = \int_0^q dq \,\frac{q}{C} = \frac{q^2}{2C} = \frac{q\phi}{2} = \frac{C\phi^2}{2}$$
(7.3)

最後の三式は、同じ量を、色々に表現する方法があることを示している。

この外部が使ったエネルギーは、充電後に電極間を開放にしておくと、そのままキャパシタ に蓄えられている。そのことは、後に、例えば両極の間を抵抗で結ぶと、放電に伴って、同量の ジュール熱が発生するなどすることから理解できる。これを**電気エネルギー**(electric energy) と呼ぶ。静電エネルギー(electro-static energy)と呼ぶ場合も多いが、7.6 節で説明するよう に、動的な場合の電場によるエネルギーも同じ形になるので、あえて、電気エネルギーとする。

図 7.3 に示すように,途中 x の深さまで誘電体の挿入された平行平板キャパシタを考えて みよう。このキャパシタンスを C(x) とすると,この電気エネルギーは $U = C(x)q^2/2$ であ る。この誘電体が横向きに受ける力は,x を変化させたときにどのくらい U が変化するかか ら求めることができる。もし x を増加させたときにエネルギー U が下がれば,誘電体は吸い 込まれるような力を受けることになるので,力は次式で得られる。

$$F = -\frac{\partial U}{\partial x}\Big|_{q} = -\frac{\partial}{\partial x}\frac{q^{2}}{2C(x)}\Big|_{q} = \frac{q^{2}}{2C(x)^{2}}\frac{dC(x)}{dx} = \frac{\phi^{2}}{2}\frac{dC(x)}{dx}$$
(7.4)

図 7.3 誘電体を途中まで入れたキャパシタは極板間に引き込まれる。

この場合, C(x) は誘電体の挿入量 x が大きいほど大きな値をとるので,その位置による微分は正である。したがって F > 0 となり,誘電体は引き込まれるという結論になる。なお,誘電体の厚さが,極板間の距離 H にほぼ等しいときの C(x) は,次式で与えられる。

$$C(x) = \frac{\varepsilon_0[\varepsilon_r x + (l-x)]W}{H}$$

これから F を求めるのは比較的簡単であるので,読者の演習問題としておこう。 間違えやすい誘導法として, $\phi = \text{const}$ とする計算法である。

$$F = -\frac{\partial U}{\partial x}\Big|_{\phi} = -\frac{\partial}{\partial x} \frac{C(x)\phi^2}{2}\Big|_{\phi} = -\frac{\phi^2}{2} \frac{dC(x)}{dx} \quad (20)$$

この結果は式 (7.4) と同じであるが,よく見ると,正負が反転している。つまり,誘電体は同 じ力で抜け出る方向の力を受けることになる。しかし,この解析は誤っている。というのは, $\phi = \text{const}$ としているからである。電位差を一定に保つには定電圧電源が必要である。ここを 経由して電荷を運ぶと,電源は仕事をする(される)ことになり,その仕事量をきちんと求め ないと,力が計算できないことになるからである。一方,電荷を一定にするには,両極をどこ にも接続せず,自由にしておくだけでよい。このため,外部におけるエネルギー収支を気にし なくてよいので,力を計算するには,q = constとして,微分する必要があるのもし,どうし ても $\phi = \text{const}$ の条件で, $U = C(x)\phi^2/2$ を利用して力を計算したい場合には,定電圧電源の 行う仕事を補正すればよい。定電圧電源は $\int dt(\phi i) = \int dt (\phi dq/dt) = \int dq \phi = q\phi$ の仕事を するので, $U - q\phi = C(x)\phi^2/2 - C(x)\phi^2 = -C(x)\phi^2/2 = -U$ を $\phi = \text{const}$ の条件で微分 すればよい。

$$F = \left. -\frac{\partial(-U)}{\partial x} \right|_{\phi} = \left. \frac{\partial}{\partial x} \frac{C(x)\phi^2}{2} \right|_{\phi} = \frac{\phi^2}{2} \frac{dC(x)}{dx}$$

なお、式(7.3)は、当然、一様な誘電体で満たされた平行平板キャパシタにも適用できる。

$$U = \frac{\phi q}{2} = \frac{q^2}{2C} = \frac{H}{2\varepsilon W l} q^2 = \frac{H}{2\varepsilon_0 \varepsilon_r W l} q^2 \tag{7.5}$$

つまり,誘電体のある場合の電気エネルギーは,同じ*q*に対し,真空キャパシタのそれの 1/ ε_r であることが導かれる。一方で,第4章で,物質のある場合の電磁気学は,物質中の電荷や 電流を明示して表現し,全電荷,全電流が真空中に作る電磁場で説明できるとした。この立場 で平行平板キャパシタを見ると,電極上に*q*があり,それに近接して,誘電体上に分極電荷 $-q_p = -q(1-1/\varepsilon_r)$ が誘引されているので,全電荷は $q_t = q - q_p = q/\varepsilon_r$ となる。この正負 電荷が真空中にあるとすると,電気エネルギーは次のようになる。

$$U_t = \frac{\phi q_t}{2} = \frac{1}{\varepsilon_r} \frac{q^2}{2C} \tag{7.6}$$

つまり,式 (7.5) に比べ,さらに $1/\varepsilon_r$ 少ないことになる。

この違いはどこに起因するのかをきちんとしておくべきであろう。式 (7.3) のエネルギーの 計算式の積分要素を見てみよう。また $\phi(q_t)$ と記載して,電位が全電荷で決定されていること を明示してある。

$$dU = dq \phi(q_t) = (dq_t + dq_p) \phi(q_t) = dq_t \phi(q_t) + dq_p \phi(q_t)$$

$$\|$$

$$dU_t$$

このうち,第一項は全電荷の移動に伴うエネルギー増であり,式 (7.6)で示される純粋な電気 エネルギーの増加である。一方,第二項は分極に費されるエネルギーであり,正負電荷を引っ 張って分極を起こす際に必要な力学的エネルギーとして蓄積される。つまり,電気エネルギー の通常の定義である式 (7.5)に示すキャパシタの充電に要するエネルギーには,式 (7.6)の全 電荷の電気エネルギー以外に,分極するのに使われる力学的エネルギーの増加分が含まれてい るのである。

純粋に電磁気的エネルギーを計算する場合には,式(7.6)が正しいが,誘電体の関わる系の力を計算する際は,多くの場合,分極に必要なエネルギーを一々意識するのは大変なので, これが自動的に含まれる式(7.5),つまり電気エネルギーの通常の定義を利用するのが得策である。

なお,7.6 節で,それなりの正当性を示すが,U を誘電体(または間の真空)全体が持つエネルギーと解釈する立場がある。となると,誘電体の単位体積当たりのエネルギーが定義できることになる。

$$u = \frac{U}{HWl} = \frac{1}{2\varepsilon} \frac{q}{Wl}^2 = \frac{\sigma^2}{2\varepsilon} = \frac{D^2}{2\varepsilon} = \frac{DE}{2\varepsilon}$$

さらに,誘電率が非線形の場合にも, $dU = dq \phi$ から推定して, $du = d\mathbf{D} \mathbf{E}$ となり,各点で次の積分を実行することにより,単位体積当たりのエネルギーが得られる。

$$u = \int d\boldsymbol{D} \boldsymbol{E} \tag{7.7}$$

7.4 磁気エネルギー

インダクタに電流を流して、磁束を増していく過程を考えよう。インダクタに電流*i*を 注入すると、磁束 ϕ が生成され、ファラデーの法則に基づき、その磁束の変化に伴う電圧 $-d\Phi/dt = -Ldi/dt$ が発生する。この電圧に対抗して電流を注入していくので、外部の電源 はインダクタに対し、仕事を行っていることが分かる。その結果、インダクタには次式で与え られるエネルギーが蓄積される。

$$U = \int dt \left(i\frac{d\Phi}{dt}\right) = \int d\Phi \, i = \int d\Phi \frac{\Phi}{L} = \frac{\Phi^2}{2L} = \frac{\Phi i}{2} = \frac{Li^2}{2} \tag{7.8}$$

最後の三式は、キャパシタと同様、同じ量を、色々に表現する方法があることを示している。

この外部が使ったエネルギーは、作業終了後、コイル両端の線を短絡しておくと、インダク タに蓄えておくことができる。このことは、後に、例えば短絡の代わりに抵抗に切り替えるな どすると、抵抗より同量のジュール熱が発生するなどすることから、理解できよう。これを磁 気エネルギー(magnetic energy)と呼ぶ。

図 7.4 に示すように,途中 x の深さまで磁性体の挿入されたソレノイドにより構成された インダクタを考えてみよう。このインダクタンスを L(x) とすると,この磁気エネルギーは $U = L(x)i^2/2$ である。この磁性体が横向きに受ける力は、x を変化させたときにどのくらい U が変化するかから求めることができる。もし x を増加させたときにエネルギー U が下がれ ば、磁性体は吸い込まれるような力を受けることになる。

この力を計算するのに,

図 7.4 棒状の磁性体を途中まで入れたインダクタ。**B** は不連続に描かれているが,実際 には各不連続面より四方へ向かう発散があり,それにより連続性が保たれている。

として計算するのは誤りである。

電流を一定にしてインダクタンスを変化するということは、鎖交磁束 $\Phi = L(x)i$ を変化させ ることになる。すると、ファラデーの法則により、起電力 $\phi = -d\Phi/dt$ が発生する。そのため、 電流源が仕事をすることになる。この仕事分を補正して、純粋な磁気エネルギーとしたものを 使用しないと、正しい力は得られない。定電流源のする仕事は $\int dt (id\Phi/dt) = \int d\Phi i = \Phi i$ であるので、これを補正したエネルギーは $U - i\Phi = L(x)i^2/2 - L(x)i^2 = -L(x)i^2/2 = -U$ を i = const の条件で微分すればよい。

$$F = -\frac{\partial(-U)}{\partial x}\Big|_{i} = \frac{\partial}{\partial x} \frac{L(x)i^{2}}{2}\Big|_{i} = \frac{i^{2}}{2} \frac{\partial L(x)}{\partial x}$$

この場合, L(x) は磁性体の挿入量 x が大きいほど大きな値をとるので,その位置による微分は正である。したがって F > 0 となり,磁性体は引き込まれるという結論になる。なお,磁性体の半径が,ソレノイドの半径 R にほぼ等しいときの L(x) は,式 (4.8) を参考にすると,次式で与えられる。

$$L(x) = \mu_0 [\mu_r x + (l - x)] n^2 S$$

n は単位長当たりの巻数である。これから F を求めるのは比較的簡単であるので, 読者の演 習問題としておこう。

なお、 $\Phi = \text{const}$ として、Uを微分して力を求める方法は正しい。

$$F = -\frac{\partial U}{\partial x}\Big|_{\Phi} = -\frac{\partial}{\partial x}\frac{\Phi^2}{2L(x)}\Big|_{\Phi} = \frac{\Phi^2}{2L(x)^2}\frac{dL(x)}{dx} = \frac{i^2}{2}\frac{dL(x)}{dx}$$

Φ = const が外部エネルギーを必要としないことは、次のような考察からも推定できる。イン ダクタを抵抗0の電流ループにより構成し、そこに永久電流を流しておく。ここに、磁性体を 入れるとか、外部から磁場を与えるなどの方法で、鎖交磁束の値を変化すると、ファラデーの 電磁誘導の法則にしたがって、コイルに沿った電場が誘起される。しかし、もし電場が存在す ると、抵抗0であるコイルには無限大の電流が流れることになる。実際には、こうしたことは 起きないが、それはインダクタに流れる電流が適切に変化することにより、コイルに鎖交する 総磁束を変化させないようにするからである。抵抗0でインダクタの両端を短絡するのは外部 の仕事を0にする一つの方法であるので、外部の仕事0は、コイルに鎖交する総磁束一定とい う条件と一致する。

超伝導体は抵抗0なので,超伝導体で作ったループに鎖交する磁束は超伝導が破壊しない限 り一定に保たれる。しばしば「超伝導体には永久電流が流れる(やや誤った表現)」と言われ るが,それは外部磁場が変化しない場合の表現であり,外部磁場が変化すれば超伝導体中の電 流はいかようにも変化させる事ができる。しかしその場合でも超伝導ループに鎖交する磁束は ずっと一定なのである。 超伝導体というとやや違和感を感じる読者もおられようが,実は磁石の中にも無数の電流 ループがある。それらのループに流れている電流は外部磁場の影響でどんどん変化するが, ループに鎖交する磁束は一定であるのである。この意味で,磁場に関する議論,特に磁性体に 関る議論では,電流を独立変数とはせず「磁束を独立変数とする」ことを推奨する。

なお,式(7.8)は、当然、一様な磁性体で満たされたソレノイドにも適用できる。

$$U = \frac{\Phi i}{2} = \frac{Li^2}{2} = \frac{\mu_0 \mu_r n^2 l S i^2}{2}$$
(7.9)

つまり,磁性体のある場合の磁気エネルギーは,同じ*i*に対し,真空インダクタのそれの μ_r 倍であることが導かれる。一方,磁性体の表面には磁化電流 i_m が流れるから,全電流は $i_t = i + i_m = \mu_r i$ となる。もし全電流 i_t が真空中にあるとした場合の,磁気エネルギーは次 のようになる。

$$U_t = \frac{\Phi i_t}{2} = \frac{L \, i \, i_t}{2} = \mu_r \frac{L i^2}{2} \tag{7.10}$$

つまり,式 (7.9) に比べ,さらに μ_r 倍,大きいことになる。

この違いはどこに起因するのかをきちんとしておくべきであろう。式 (7.8) のエネルギーの 計算式の積分要素を見てみよう。

$$\begin{split} dU &= d\Phi \, i(\Phi) = \! d\Phi \, i_t(\Phi) - d\Phi \, i_m(\Phi) \\ & \parallel \\ & dU_t \end{split}$$

このうち,第一項は全鎖交磁束の増加に伴うエネルギー増であり,式(7.10)で示される純粋な 磁気エネルギーの増加である。一方,第二項は磁化に費されるエネルギーであり,磁化を起こ す際に必要な力学的エネルギーとして蓄積される。つまり,磁気エネルギーの通常の定義であ る式(7.9)のインダクタに蓄積されるエネルギーは,式(7.10)の全鎖交磁束の磁気エネルギー から,磁化に使われる力学的エネルギー分を削減する必要があるのである。

純粋に電磁気的エネルギーを計算する場合には,式 (7.10) が正しいが,磁性体の関わる系の力を計算する際は,多くの場合,磁化に必要なエネルギーを一々意識するのは大変なので, これが自動的に含まれる式 (7.9),つまり磁気エネルギーの通常の定義を利用するのが得策である。

なお,7.6 節で,それなりの正当性を示すが,U を磁性体(または間の真空)全体が持つエネルギーと解釈する立場がある。となると,磁性体の単位体積当たりのエネルギーが定義できることになる。

$$u = \frac{U}{Sl} = \frac{\mu n^2 i^2}{2} = \frac{\mu K^2}{2} = \frac{B^2}{2\mu} = \frac{BH}{2}$$

さらに,透磁率が非線形の場合にも, $dU = d\Phi i$ から推定して,du = dBHとなり,各点で次の積分を実行することにより、単位体積当たりのエネルギーが得られる。

$$u = \int d\boldsymbol{B} \,\boldsymbol{H} \tag{7.11}$$

さて、(7.7) と (7.11) を比較してみると、 $E \ge H$ が対応している。 $q \approx i$ の作る場という 意味では E-B が良く対応がとれているが、外部とのエネルギーの出入りを許さない条件での エネルギーの計算では、E-H (D-B) 対応の方が合理的である。例えば、電極間が変化する キャパシターの持つエネルギーを計算するには D が変化しないとして計算するのが良く、回 転機のようなエネルギーを計算するには B が変化しないとして計算するのが適切ということ になる。ちなみに、 $\int dS D = q, \int dS B = \Phi$ である。

7.5 運動量の増減と応力テンソル

以上,一点に集中した電荷や一つの線を流れる電流に働く力を議論してきたが,分布した 電荷や電流に働く力を議論しよう。運動している分布自由電荷に働く**ローレンツカ**(Lorentz force)は次式で与えられる。

$$f = \rho(E + v \times B) = \rho E + \rho v \times B = \rho E + J \times B$$

まず、物質のない場合を考慮しよう。この右辺 ρ とJを、divE式および rotB式を利用して、電磁場により書き換えてみよう。

$$f = \rho E + J \times B$$

$$= E(\varepsilon_0 \operatorname{div} E) - B \times \left(\frac{1}{\mu_0} \operatorname{rot} B\right) + B \times \frac{\partial \varepsilon_0 E}{\partial t}$$

$$= \varepsilon_0 E \operatorname{div} E - \varepsilon_0 E \times \operatorname{rot} E + \frac{1}{\mu_0} B \operatorname{div} B - \frac{1}{\mu_0} B \times \operatorname{rot} B$$

$$+ \varepsilon_0 B \times \frac{\partial E}{\partial t} - \varepsilon_0 E \times \frac{\partial B}{\partial t}$$

$$= i \left\{ \varepsilon_0 \left[\frac{\partial}{\partial x} \left(E_x^2 - \frac{1}{2} E^2 \right) + \frac{\partial}{\partial y} (E_x E_y) + \frac{\partial}{\partial z} (E_x E_z) \right] \right.$$

$$\left. + \frac{1}{\mu_0} \left[\frac{\partial}{\partial x} \left(B_x^2 - \frac{1}{2} B^2 \right) + \frac{\partial}{\partial y} (B_x B_y) + \frac{\partial}{\partial z} (B_x B_z) \right] \right\}$$

$$\left. + j[\cdots] + k[\cdots] - \varepsilon_0 \frac{\partial}{\partial t} (E \times B)$$

$$= i \sum_i \frac{\partial T_{ix}}{\partial x_i} + j \sum_i \frac{\partial T_{iy}}{\partial x_i} + k \sum_i \frac{\partial T_{iz}}{\partial x_i} - \frac{\partial g}{\partial t}$$
(7.12)

ここで三番目の等号は、 $\varepsilon_0 E$ と rot E 式の外積と、 B/μ_0 と div B 式の内積を利用して変形している。また、 T_{ij} と g は次のように定義される。

$$T_{ij} = \varepsilon_0 \left(E_i E_j - \delta_{ij} \frac{\boldsymbol{E}^2}{2} \right) + \frac{1}{\mu_0} \left(B_i B_j - \delta_{ij} \frac{\boldsymbol{B}^2}{2} \right)$$
(7.13)

$$\boldsymbol{g} = \varepsilon_0 \boldsymbol{E} \times \boldsymbol{B} \tag{7.14}$$

である。 δ_{ij} は**クロネッカーデルタ**(Kronecker delta)で、次式で定義される。

$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

左辺は、分布電荷に働く力であり、分布電荷の持つ単位体積当たりの力学的運動量 g_k の増加率ともいえるので、以下のように書くことができる。

$$\frac{\partial \boldsymbol{g}_k}{\partial t} = \nabla \cdot T - \frac{\partial \boldsymbol{g}}{\partial t}$$

ここで、テンソル(行列)Tはマクスウェル応力テンソル(Maxwell stress tensor)、gは電 磁場の運動量(momentum of electro-magnetic field)と呼ばれている。T がテンソルである ため、 $\nabla \cdot$ は grad でも div でもないことに注意してほしい。 $\nabla \cdot T$ の本当の意味を理解するた めには、成分展開の式に立ち返るべきである。

この式の両辺をある体積で体積積分すると、次式が得られる。

$$\frac{\partial}{\partial t}\int_{\mathbf{V}}dV(\boldsymbol{g}_{k}+\boldsymbol{g})=\oint_{\mathbf{S}}d\boldsymbol{S}\cdot\boldsymbol{T}$$

これから、力が運動量の増加を引き起こすことが分かるが、力が電磁気的な応力という形で与 えられること、運動量には g なる電磁気的運動量を含んでいることを理解してほしい。

応力というと苦手な人が多いかとも思うが,要は,空間に小さな直方体を切り取ったとき に,yz 面に働く力が (T_{xx},T_{yx},T_{zx}) になると理解すればよい。例えば T_{xx} が正のときは引張 力,負のときには圧縮力に定義される。それにしても T の要素が複雑である。こうしたとき には,この行列の固有値問題を解いて,主軸変換するとよい。

まず磁場のない電場のみの場合のテンソルを主軸変換してみよう。すると、主軸は E の方向にあり、その方向の固有値は $\varepsilon_0 E^2/2$ となる。また、第二、第三の主軸はこれと直交しており、その方向の固有値は縮退していて、 $-\varepsilon_0 E^2/2$ となる。これから、E の方向に垂直の面は $\varepsilon_0 E^2/2$ の引張力を受け、それと垂直ないずれの方向の面も $\varepsilon_0 E^2/2$ の圧縮力を受けることが分かる。この理由により、電気力線はその方向に縮もうとし、その垂直方向に膨らもうという力を出すといわれる。

まず,静的な場合を考えよう。電気力線は,電荷を始点や終点にするから,電荷に働く力は, 電気力線の引張力で説明できることになる。例えば,導体上の電荷は常に外向きに引力を受け るが,それはこの電気力線の引張力で理解できる。また微小サイズの正電荷が負電荷に引かれ る様子は,正電荷表面の電気力線の密度が,負電荷側で高いことから,視覚的に理解できる。

また,導体表面で,同種の電荷同士は横向きに押し合っており,それが故に,電荷は一様に 分布するのであるが,それが電気力線の横向きの圧縮力に繋がるのである。

電場のない磁場のみの場合のテンソルを主軸変換すると、電場の場合と同様に、Bの方向に 垂直の面は $B^2/2\mu_0$ の引張力を受け、それと垂直ないずれの方向の面も $B^2/2\mu_0$ の圧縮力を 受けることが分かる。この理由により、磁力線もその方向に縮もうとし、その垂直方向に膨ら もうという力を出すといわれる。

磁力線は電流を囲むように生成されるから,電流に働く力は,磁力線に垂直な圧縮力で説明 できることになる。例えば,同方向に流れる電流同士が互いに引かれる様子は,これらが作る 磁力線が電流の線の間で疎であり,外部で密であることから,視覚的に理解できる。

電場も磁場もあるときの主軸変換は,きれいな形にはならない。しかし静的な場合には,電 荷は電気力線としか関わらず,電流は磁力線としか関わらないので,それぞれ独立な応力によ り理解できる。

次に,動的な場合を考察しよう。この場合には,*g*の時間微分が効いてくるため,電荷や電流に働く力はマクスウェル応力だけでは説明できなくなる。

積分形の体積をきわめて巨大にしていくと、遠方では場が弱くなっていくため、その表面積 分である応力の項は消えていくだろう。残った項は、力と電磁場の運動量の時間微分に関わる ものである。通常は、力の体積積分は、作用反作用の法則(action-reaction law)で0になる ことが期待できるが、そうはなっていない。つまり、作用反作用の法則は成立しないのであ る。その差は、*g*の時間微分により説明できるのである。

力の時間積分は運動量である。このため *g* は電磁場の運動量と呼ばれるのである。この作 用反作用の法則の不成立に関して,電磁気学ではきわめて多くのパラドックスが提示されてい る。そのすべてが,この電磁場の運動量を考慮することにより,理解できることを知っていて ほしい。

物質があり,特に $D = \varepsilon E$, $B = \mu H$ と線形の場合には, f が,自由電荷,自由電流にか かる力とすることにより,物質のない場合の ε_0 , $\mu_0 \varepsilon$, ε , μ に変更するだけで,すべて,真 空の場合と同じ式変形が適用できるので,次式が得られる。

$$T_{ij} = \varepsilon \left(E_i E_j - \delta_{ij} \frac{\boldsymbol{E}^2}{2} \right) + \frac{1}{\mu} \left(B_i B_j - \delta_{ij} \frac{\boldsymbol{B}^2}{2} \right)$$
$$\boldsymbol{g} = \varepsilon \boldsymbol{E} \times \boldsymbol{B}$$
(7.15)

ここで注意してほしいのは、これらの式が、誘電体や磁性体に蓄えられるエネルギーを、す

べて電磁気エネルギーとして組み込んだ場合の式であることである。したがって,ここで計算 された電磁気的応力にも,力学的応力が組み込まれているを意識しなければならない。

例えば、図 7.3 の誘電体先端付近では、E は誘電体内と誘電体外部ではほぼ同じであるの で、応力は $\varepsilon E^2/2 \ge \varepsilon_0 E^2/2 \ge \mu$ なる。しかし、その違いは、実は力学的応力の差であり、す ぐ後に示すように、電磁気的応力は同じである。平行平板キャパシタの中に誘電体が引き込ま れる効果を説明するのに、しばしば、電気力線の横方向の圧力の結果であると記載した書が多 く見られるが、それは間違いである。面倒な計算の割に使いづらい式である。

こうした間違いを起こさないためには、分極電荷や磁化電流をも含むすべての電荷(全電 荷)、電流(全電流)に対して計算したマクスウェル応力を使うほうが便利である。電荷や電 流として、物質中に誘起される電荷や電流も含むことにすれば、これらは、真空中に存在して いるのと同じにあるので、先に示した物質のない場合の取り扱いと同じになる。つまり、 *ρ*や *J*を全電荷、全電流と思えばよいだけである。その結果、マクスウェル応力と電磁場の運動量 は、式 (7.13)と式 (7.14)で与えられることになる。このマクスウェル応力を使うと、ローレ ンツ力を計算しなくても、電場や磁場の分布から、誘電体や磁性体に働く力を計算することも 可能である。

例えば、誘電体の表面に分極電荷が誘起されていると、 E_n が不連続になることが知られているが、この結果、 $\Delta(E_n^2/2)$ なる力が誘電体表面に働くことが誘導できる。また、平行平板キャパシタの中に誘電体が中途まで入っている場合には、この誘電体の先端付近での圧力は、内外とも $\varepsilon_0 E^2/2$ であり、先端を引き込むような応力は発生しない。ちなみに、誘電体が引き込まれるのは、第 (11) 章で解説するように、誘電体の角付近のエッジ効果による。

物質があり,誘電率や透磁率が非線形の可能性があり,かつ,それらに場所依存がある 場合には,式 (7.15) に代わるものとして,次のようにして計算できる。

 $\boldsymbol{f} = \rho \boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B}$

$$= \mathbf{E} \operatorname{div} \mathbf{D} - \mathbf{B} \times \operatorname{rot} \mathbf{H} + \mathbf{B} \times \frac{\partial \mathbf{D}}{\partial t}$$

$$= \mathbf{E} \operatorname{div} \mathbf{D} - \mathbf{D} \times \operatorname{rot} \mathbf{E} + \mathbf{H} \operatorname{div} \mathbf{B} - \mathbf{B} \times \operatorname{rot} \mathbf{H}$$

$$+ \mathbf{B} \times \frac{\partial \mathbf{D}}{\partial t} - \mathbf{D} \times \frac{\partial \mathbf{B}}{\partial t}$$

$$= \mathbf{i} \left\{ \left[\left(E_x \frac{\partial D_x}{\partial x} + D_x \frac{\partial E_x}{\partial x} \right) + \left(E_x \frac{\partial D_y}{\partial y} + D_y \frac{\partial E_x}{\partial y} \right) + \left(E_x \frac{\partial D_z}{\partial z} + D_z \frac{\partial E_x}{\partial z} \right) \right]$$

$$- \left(D_x \frac{\partial E_x}{\partial x} + D_y \frac{\partial E_y}{\partial x} + D_z \frac{\partial E_z}{\partial x} \right) \right] + [\operatorname{similar magnetic terms}] \right\}$$

$$+ \mathbf{j} \{ \cdots \} + \mathbf{k} \{ \cdots \} - \frac{\partial \mathbf{D}}{\partial t} \times \mathbf{B} - \mathbf{D} \times \frac{\partial \mathbf{B}}{\partial t}$$

$$= \mathbf{i} \left\{ \begin{bmatrix} \frac{\partial}{\partial x} \left(E_x D_x - \mathbf{E} \cdot \mathbf{D} + u_e \right) + \frac{\partial}{\partial y} \left(E_x D_y \right) + \frac{\partial}{\partial z} \left(E_x D_z \right) \end{bmatrix} \right. \\ \left. + \left[\frac{\partial}{\partial x} \left(H_x B_x - \mathbf{H} \cdot \mathbf{B} + u_m \right) + \frac{\partial}{\partial y} \left(H_x B_y \right) + \frac{\partial}{\partial z} \left(H_x B_z \right) \right] \right. \\ \left. + \mathbf{j} [\cdots] + \mathbf{k} [\cdots] - \frac{\partial}{\partial t} \left(\mathbf{D} \times \mathbf{B} \right) \right. \\ = \mathbf{i} \sum_i \frac{\partial T_{ix}}{\partial x_i} + \mathbf{j} \sum_i \frac{\partial T_{iy}}{\partial x_i} + \mathbf{k} \sum_i \frac{\partial T_{iz}}{\partial x_i} - \frac{\partial \mathbf{g}}{\partial t} \right]$$

ここで、ue、um は次式で定義される量である。

$$u_e = \int E dD$$

 $u_m = \int H dB$

また、5番目の等号では、部分積分の公式を用いて、

$$D_x \frac{\partial E_x}{\partial x} = \frac{\partial (E_x D_x)}{\partial x} - E_x \frac{\partial D_x}{\partial x}$$

などと変形し、さらに、この右辺第二項を次のように変形している。

$$E_x \frac{\partial D_x}{\partial x} = \frac{\partial}{\partial x} \left(\int E_x dD_x \right)$$

この場合, T_{ij} とgは次のようになる。

$$T_{ij} = E_i D_j - \delta_{ij} (\boldsymbol{E} \cdot \boldsymbol{D} - u_e) + H_i B_j - \delta_{ij} (\boldsymbol{H} \cdot \boldsymbol{B} - u_m)$$
$$\boldsymbol{g} = \boldsymbol{D} \times \boldsymbol{B}$$

7.6 エネルギーの増減とポインティングベクトル

前節で電磁場の運動量の増減に関わる式を誘導したが、力に速度を掛けた式から、電磁場の エネルギーの増減に関わる式を誘導することができる。ローレンツ力の式の両辺に v を内積 の形で掛けると、磁界の項は消去され、次式が得られる。

$$F \cdot v = qE \cdot v$$

これから分布電荷に対する式として次式が得られる。

$$f \cdot v = E \cdot J$$

物質のない場合,この右辺の J を電磁場で置き換えてみよう。

$$\boldsymbol{E} \cdot \boldsymbol{J} = \boldsymbol{E} \cdot \left(\frac{1}{\mu_0} \operatorname{rot} \boldsymbol{B} - \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t}\right)$$

$$= \frac{1}{\mu_0} \boldsymbol{E} \cdot \operatorname{rot} \boldsymbol{B} - \frac{1}{\mu_0} \boldsymbol{B} \cdot \operatorname{rot} \boldsymbol{E} - \varepsilon_0 \boldsymbol{E} \cdot \frac{\partial \boldsymbol{E}}{\partial t} - \frac{1}{\mu_0} \boldsymbol{B} \cdot \frac{\partial \boldsymbol{B}}{\partial t}$$

$$= -\frac{1}{\mu_0} \operatorname{div}(\boldsymbol{E} \times \boldsymbol{B}) - \frac{\partial}{\partial t} \left(\frac{\varepsilon_0}{2} \boldsymbol{E}^2 + \frac{1}{2\mu_0} \boldsymbol{B}^2\right)$$

$$= -\operatorname{div} \boldsymbol{S} - \frac{\partial u}{\partial t}$$
(7.16)

ここで、二番目の等号は、 B/μ_0 と rot E 式の内積を利用して変形されている。ただし、Sとuは次式で定義される。

$$\boldsymbol{S} = \frac{1}{\mu_0} \boldsymbol{E} \times \boldsymbol{B} \tag{7.17}$$

$$u = \frac{\varepsilon_0}{2} \boldsymbol{E}^2 + \frac{1}{2\mu_0} \boldsymbol{B}^2 \tag{7.18}$$

ここで, S はポインティングベクトル (Poynting vector) と呼ばれる。また, u は単位体積当たりの電磁場のエネルギー (energy of electo-magnetic field) である。第一項は電気エネル ギー u_e , 第二項は磁気エネルギー u_m である。

左辺は分布電荷の持つ運動エネルギー *u_k* の単位時間当たりの増加量であるので,次のようにまとめることができる。

$$\frac{\partial u_k}{\partial t} = -\operatorname{div} \boldsymbol{S} - \frac{\partial u}{\partial t}$$

体積積分をとり、適当に移項すると、電流連続の式と似た次式が得られる。

$$\frac{\partial}{\partial t} \int_{\mathbf{V}} dV(u_k + u) = -\oint_{\mathbf{S}} d\boldsymbol{S} \cdot \boldsymbol{S}$$

これから,ポインティングベクトルの発散積分が,囲んだ体積の内部のエネルギーの減少にな ることがいえるが,エネルギーには *u* なる電磁場エネルギーを含んでいることを理解してほし い。つまり,ポインティングベクトルはエネルギーの流れであり,単位面積当たり,単位時間 に流れるエネルギーといえる。

前節と同様に、物質が線形応答する場合は、fを自由電荷、自由電流に働く力として、同様な計算ができるので、上式の ε_0 を ε 、 μ_0 を μ と置き換えるだけでよい。

ただし,これらのエネルギーなどの値には,媒質に蓄えられる力学的エネルギーなどが含ま れていることに注意してほしいことは,前節の場合と同様である。この場合にも,分極電荷や 磁化電流などを,すべて真空中に置いた場合の式のほうが使いやすい場合が多い。その計算の 結果は,式 (7.17) および式 (7.18) で与えられる。

なお,前節の各関係式と本節の各関係式は,きわめて似ている。実は,後述する相対性理論 を使うと,一つの関係式に統合することができることのみ,指摘しておこう。

ポインティングベクトルと電磁場運動量の定義もきわめて似ている。事実,真空中の両者に は,次式の関係が得られる。

$$\boldsymbol{S} = \frac{1}{\varepsilon_0 \mu_0} \boldsymbol{g} = c^2 \boldsymbol{g} \tag{7.19}$$

この比例関係は,後に学ぶ相対性原理より,質量0で光速で運動する粒子の流れの場合に常に 成立する関係である。つまり,電磁場は質量0で光速で運動する粒子流と見なせることを暗示 している。

前節と同様,非線形な物質がある場合も,自由電荷,自由電流に対して同じような計算 が実行できる。

$$\begin{aligned} \boldsymbol{E} \cdot \boldsymbol{J} &= \boldsymbol{E} \cdot (\operatorname{rot} \boldsymbol{H} - \frac{\partial \boldsymbol{D}}{\partial t}) \\ &= \boldsymbol{E} \cdot \operatorname{rot} \boldsymbol{H} + \boldsymbol{H} \cdot \operatorname{rot} \boldsymbol{E} - \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} - \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} \\ &= -\operatorname{div}(\boldsymbol{E} \times \boldsymbol{H}) - \left(\boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t}\right) \\ &= -\operatorname{div} \boldsymbol{S} - \frac{\partial u}{\partial t} \end{aligned}$$

ただし、S と u は次式で定義される。

$$S = E \times H$$
 $u = u_e + u_m$

また、 u_e と u_m は次式で定義される。

$$u_e = \int d\boldsymbol{D} \boldsymbol{E}$$
 $u_m = \int d\boldsymbol{B} \boldsymbol{H}$

特に線形な媒質の場合には、次式が成立する。

$$u_e = \frac{\varepsilon E^2}{2} \qquad \qquad u_m = \frac{B^2}{2\mu}$$

つまり、物質のない場合の ε_0 , μ_0 を, ε , μ にしただけの式となる。これらの式は、7.3 節の 電気エネルギー、および 7.4 節に示した磁気エネルギーの、単位体積当たりの値と一致する。

第8章

動的電磁場

ポテンシャルを使うと,動的な電磁場解析のようなどちらかというと複雑な問題も,比較的 簡単に解くことができる。本章では,一般的な動的電磁場の議論に合せて,いくつかの例に対 する解析結果を示す。

8.1 δ 関数励振の解

σ と V, および J と A を結び付けるポテンシャルの波動方程式 (wave equation of potentials) から,容易に動的電磁場に対応する解を得ることができる。まずスカラーポテンシャルを導き出そう。静電場の場合に,点電荷の作るポテンシャルを基礎としたように,動的 電磁場では,時間とともに値の変化する点電荷の作るポテンシャルを考える。分布した電荷の 作り出すポテンシャルは,これらの重ね合わせで求めることができる。

まず,原点にQ(t)で変化する点電荷が存在したとしよう。これが作り出すポテンシャルは,当然,球対称となる。つまり, $\phi(r,t)$ で表される。このときラプラシアンもrだけで表されるはずである。 $r = \sqrt{x^2 + y^2 + z^2}$ であるから,x,y,zの微分は次のようにrの微分に置き換えられる。

$$\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial r} \frac{dr}{dx} = \frac{x}{r} \frac{\partial \phi}{\partial r}$$
$$\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{x}{r} \frac{\partial \phi}{\partial r} \right) = \frac{r - x(x/r)}{r^2} \frac{\partial \phi}{\partial r} + \left(\frac{x}{r} \right)^2 \frac{\partial^2 \phi}{\partial r^2}$$
$$\nabla^2 \phi = \frac{2}{r} \frac{\partial \phi}{\partial r} + \frac{\partial^2 \phi}{\partial r^2} = \frac{1}{r} \frac{\partial^2 (r\phi)}{\partial r^2}$$

したがって、スカラーポテンシャルの波動方程式は次のように与えられる。ここで、r = 0以外の部分では $\rho = 0$ を考慮し右辺は0とした。

108

$$\frac{1}{r}\frac{\partial^2(r\phi)}{\partial r^2} - \frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2} = 0$$
$$\frac{\partial^2(r\phi)}{\partial r^2} - \frac{1}{c^2}\frac{\partial^2(r\phi)}{\partial t^2} = 0$$

この式を見てみると、 $r\phi$ に対する一次元の波動方程式になっている。この解はよく知られているように $t \pm r/c$ の任意の関数の合成で与えられる。

$$r\phi = f(t - r/c) + g(t + r/c)$$

この式を前式に代入してみると,確かに波動方程式を満たすことはすぐに検証できよう。逆 に,波動方程式のいかなる解もこの式で表現できることが知られているが,それについては, 微分方程式の一般的な書物に譲ることとしたい。上式より,ただちに次式が得られる。

$$\phi = \frac{f(t - r/c)}{r} + \frac{g(t + r/c)}{r}$$

f は中心から外向きへ出ていく進行波, g は逆に中心に向かって入ってくる後退波である。 両方の波が存在すると仮定しても,何も物理的には問題のないことは分かっているが,原因と なる電荷が中心にあるので,すべての波動は中心から外向きに伝播していくと考えるほうが分 かりやすい。そこで多くの場合, f のみを採用する。我々もその形で,以後の議論を進めよう。 しかし,くれぐれも強調しておくが,gを含めても,何も矛盾する解とはならない。単に考え づらいだけである。

上記の解を見てみると,静電場と同じような 1/r の距離依存性を持っていることが分かる。 また,現象が中心から光速で外向きに伝播していくのが分かる。r = 0 付近の解は,電荷の時 間変動にほとんど遅延なく追従するはずであるから,Q(t)の作る静電場に一致するはずであ る。このことから次のような解が予想できる。

$$\phi = \frac{1}{4\pi\varepsilon_0} \frac{Q(t-r/c)}{r} \tag{8.1}$$

これが動的に変化する点電荷の作るスカラーポテンシャルである。つまり,クーロンポテン シャルと同じ形ではあるが,光速の伝播時間だけ遅れたポテンシャルを感じるのである。

電荷が分布して存在するときは,この式から容易に想像できるように,この解を重ね合わせ ればよい。

$$\phi(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \int dV' \, \frac{\rho(\mathbf{r}',t-|\mathbf{r}-\mathbf{r}'|/c)}{|\mathbf{r}-\mathbf{r}'|} \tag{8.2}$$

ベクトルポテンシャルについても、まったく同様の手法を適用することができる。この場合 は、 J_x が A_x を、 J_y が A_y を、 J_z が A_z を同じ原理で作り出す。したがって、上記の二式 に対応して、次の二式を得る。

$$d\boldsymbol{A} = \frac{\mu_0}{4\pi} \frac{I(t - r/c) \, d\boldsymbol{r}}{r} \tag{8.3}$$

$$\mathbf{A}(r,t) = \frac{\mu_0}{4\pi} \int dV' \, \frac{\vec{J}(r',t-|\mathbf{r}-\mathbf{r}'|/c)}{|\mathbf{r}-\mathbf{r}'|}$$
(8.4)

これらの式を利用すれば,時々刻々の電荷分布と電流分布が完全に分かっていれば,時々 刻々のスカラーおよびベクトルポテンシャルが決定できる。なお,式 (8.2) および式 (8.4) は, **遅延ポテンシャル**(retarded potential)と呼ばれる。

8.2 点電荷の発生

動的なスカラーポテンシャルとベクトルポテンシャルの例として,第4章に示した誘電緩和 の話を示そう。誘電緩和は明らかに動的な動作にも関わらず,光速というものがまったく現れ てこない。これは不思議な現象である。例えば,最初に電荷を配置するとき,電荷を配置した という情報は光速でしか伝わらないはずである。この辺の正確な議論をするには,まさに前節 で述べた動的な解析が必要となるのである。この解答はすぐには得られないが,順を追って次 節より説明を進めて行こう。^{*1}

まず,原点にt = 0で突然 Q_0 の電荷が現れ,その後変化しない場合を取り扱おう。突然 といっても,過渡的な部分の解析もしたいので, τ の時間がかかったとし, $0 \le t \le \tau$ で $Q(t) = Q_0 t / \tau$ とする。電荷だけが存在するのでA = 0となり, ϕ のみを計算すればよい。

電荷はクーロン場を発生するが,各観測点で感じるポテンシャルは,t < r/cではまだ何も 感じないし,それより τ の間は電荷の立ち上がりを感じ,さらにそれ以後では定常的なクーロ ン場を感じることになる。

$$\phi = \frac{Q_0}{4\pi\varepsilon_0 r} \times \begin{cases} 0 & \text{for } t \le r/c \\ \frac{t - r/c}{\tau} & \text{for } r/c \le t \le r/c + \tau \\ 1 & \text{for } r/c + \tau \le t \end{cases}$$

同じ式を条件部分のみ書き直すと,時刻*t* でスナップショットを撮ったときのポテンシャル の空間分布という形で表現できる。原点近くでは定常的なクーロン場を感じ,やや遠方では電 荷の立ち上がりを感じ,*ct < r* の遠方ではまだ電荷発生のことが伝わっていない。

$$\phi = \frac{Q_0}{4\pi\varepsilon_0 r} \times \begin{cases} 1 & \text{inside sphere} \\ \frac{t - r/c}{\tau} & \text{spherical shell} \\ 0 & \text{outside sphere} \end{cases}$$
(8.5)

ただし、条件を厳密に式で表すと、次のようになっている。

^{*1} この問題提起は東北大学名誉教授川上彰二郎先生からなされ,二人でこれから述べる結論に逹したものである。

 $\begin{array}{ll} \text{inside sphere:} & r \leq c(t-\tau) \\ \text{spherical shell:} & c(t-\tau) \leq r \leq ct \\ \text{outside sphere:} & ct \leq r \\ \end{array}$

これと **A** = 0 を組み合わせると、上式第二行の遷移時間のところで、ローレンス条件を満 たしていない。それは、そもそも電荷だけが突然あるところに出現することはなく、必ずそれ に対応する電流が流れていなければならず、それが作るベクトルポテンシャルを無視している からである。これについては次節以後に述べる。

8.2.1 対称励振

まず、スカラーポテンシャルは前節に示したものと同じになる。ベクトルポテンシャルを求めるには、まず電流分布を知る必要がある。前小節で述べたように、電荷が突然あるところに 出現するには、必ずそれに対応する電流が流れていなければならない。電流が無限遠のあら ゆる方向から原点に向かって対照的に流れ込んだ結果、突然原点に電荷が発生したものとし よう。このためには一瞬大電流が流れ込む必要がある。一瞬を τ とすると、電流の大きさは Q_0/τ となる。この電流は原点対称に分布しているが、その原点からr離れた点での電流密度 は次のようになる。

$$J_r = -\frac{Q_0}{4\pi\tau} \frac{u(t) - u(t-\tau)}{r^2}$$

ここで、u(t)とは、t = 0から1になる階段関数であり、右辺の括弧全体で $0 < t < \tau$ の間だけ存在することを示す。以下、ポテンシャルを求めるところまで、この時間項のことは無視して議論してさしつかえない。

電流源の座標を \mathbf{r}' , 観測点を \mathbf{r} , 観測点から電流源を見た座標を $\mathbf{R}(=\mathbf{r}'-\mathbf{r})$ としよう。 電流が観測点に作るベクトルポテンシャルには伝播遅延があるため, 観測点からの半径が $c(t-\tau) \leq R \leq ct$ の球殻状の領域の電流しか影響を与えない。また, この球殻上の電流の効 果はベクトル的に合算されるため, その \mathbf{r} 方向の成分しか影響してこない。このことを考えて Aを求めると次のようになる。

$$\begin{aligned} A_r &= -\frac{Q_0}{\tau} \int 2\pi R^2 \sin\theta \, dR \, d\theta \, \frac{1}{4\pi r'^2} \frac{\mu_0}{4\pi R} \frac{r + R\cos\theta}{r'} \\ &= -\frac{\mu_0 Q_0}{8\pi \tau} \int dR \, d\theta \, \frac{(r + R\cos\theta)R\sin\theta}{\sqrt{R^2 + 2rR\cos\theta + r^2^3}} \\ &= -\frac{\mu_0 Q_0}{4\pi \tau r^2} \int_{c(t-\tau)}^{ct} dR R \left[u(R+r) - u(R-r) \right] \\ &= -\frac{\mu_0 Q_0}{4\pi (2\tau)} \times \begin{cases} 0 & \text{inside sphere} \\ \left\{ \left(\frac{ct}{r}\right)^2 - \left[\frac{c(t-\tau)}{r}\right]^2 \right\} & \text{spherical shell} \\ \left\{ \left(\frac{ct}{r}\right)^2 - \left[\frac{c(t-\tau)}{r}\right]^2 \right\} & \text{outside sphere and for } \tau \le t \\ 0 & \text{for } t \le 0 \end{cases} \end{aligned}$$

$$(8.6)$$

なお,この定積分は複雑そうなので,数式処理のソフトによって求めた。この解と,式(8.5) で表されるスカラーポテンシャルと組み合わせると,きちんとローレンス条件を満たしている が,その証明は読者に任せる。これらのポテンシャルを半径方向に計算した結果を,図 8.1 に 示す。

ここで得られたスカラーポテンシャルとベクトルポテンシャルから電場や磁場を計算するこ とができる。その結果,まず A の放射対称性から B = 0 となる。また $E = -\operatorname{grad} \phi - \partial A / \partial t$ の計算結果は次のようになる。

$$\boldsymbol{E} = \frac{Q_0}{4\pi\varepsilon_0 r^2} \times \begin{cases} 0 & \text{for } t \leq 0\\ \frac{t}{\tau} & \text{for } 0 \leq t \leq \tau\\ 1 & \text{for } \tau \leq t \end{cases}$$

最初の過渡的な時間を除くと,電場は全領域にわたってクーロン型の形をしている。また, 過渡的な時間も,最終的な値に全領域が比例的に立ち上がっているだけである。

不思議なことに、電場には光速の効果が現れてこない。これは次のように理解できる。まず 最初に、原点に向かう電流を全領域に強制的に流したが、原点での電流連続性から、逆向きに 変位電流が流れざるをえなくなる。変位電流は電場の時間微分に比例するので、電場が全領域 に発生することになる。その後、電流を止めるが、このときには原点の電荷が作る伝播域内部 の電場との連続性から、外部にも同じ形の電場が残存せざるを得ない。つまり、電荷発生後は 常に、全領域にクーロン型の電場が存在することになるのである。

さて,全領域に電場が存在するのならば,導体中にそれに比例した電流が流れることになり,結局,見かけ誘電緩和過程には光速が現れないことになるのである。

なお,ここに示すような空間対称性のよい問題に対しては,ローレンス条件を利用して A を計算するほうが楽である。ローレンス条件を書き換えると次のような div A に関する式が 得られる。

$$\operatorname{div} \boldsymbol{A} = -\varepsilon_0 \mu_0 \frac{\partial \phi}{\partial t}$$

つまり, $-\partial \phi / \partial t$ を電荷のように思って,ガウスの法則により電場を求める手法を利用して, A を求めるという方法である。まず $-\varepsilon_0 \mu_0 \partial \phi / \partial t$ を求めておこう。

 $-\varepsilon_0 \mu_0 \frac{\partial \phi}{\partial t} = -\frac{\mu_0 Q_0}{4\pi r\tau} \times \begin{cases} 0 & \text{inside sphere} \\ 1 & \text{spherical shell} \\ 0 & \text{outside sphere} \end{cases}$

この値の半径 r までの体積積分を球面の面積 $4\pi r^2$ で除したものが A_r となる。この結果は式 (8.6) と完全に一致する。

なお、これらの $\tau \rightarrow 0$ の極限を示すと、次のようになる。

$$\phi = \frac{Q_0}{4\pi\varepsilon_0 r} \times \begin{cases} 1 & \text{inside sphere} \\ 0 & \text{outside sphere} \end{cases}$$
$$A_r = -\frac{\mu_0 c^2 Q_0 t}{4\pi r^2} \times \begin{cases} 0 & \text{inside sphere} \\ 1 & \text{outside sphere} \end{cases}$$

まとめると,スカラーポテンシャルは,クーロンポテンシャルをほぼ *r* = *ct* の付近まで影響させながら,徐々にその影響域を光速で拡げていく。一方,そのスカラーポテンシャルの裾

野を拡げるために、ベクトルポテンシャルが無限遠から、この裾野まで内向きに存在する。こ のベクトルポテンシャルは一点で観測する限り時間とともに増大し、境界が到達したとたんに 消滅する。また境界とともに移動しながら観測していると、その最大値は時間に反比例して減 衰していく。最後には無限遠まで拡がったスカラーポテンシャルだけが存在することになる。

誘電緩和の場合には、このようにして注入によりでき上がった電荷が漏曳電流によって、 徐々に減衰していく。つまり、対称電流注入の場合、誘電緩和には光速の効果は見えてこない。

8.2.2 非対称励振

続いて,非対称に電荷を注入する場合を考えよう。z軸に沿って,負側から直線電線に沿った電流によって,原点に電荷が注入される場合を取り扱おう。またしても、 $0 \le t \le \tau$ の時間, 一定電流 Q_0/τ が流れたものとする。

電荷だけに着目すると、前小節と同じ形をしているので、それが作るスカラーポテンシャル は、式 (8.5) と変わらない。一方、電流の作るベクトルポテンシャルであるが、z 軸から円柱 座標で R 離れた観測点で、時刻 t に観測されるベクトルポテンシャルは、伝播遅延があるた め、そこからの半径が $c(t - \tau)$ 以上でかつ ct 以下に存在する電流だけとなる。今度は電流が 直線上にしか存在しないため、その計算はかなり簡単なものになる。

このことを考えて A を求めると次のようになる。なお,観測点の z が十分負の場合を,最初 に取り扱おう。電流の流れている z 軸上の源の座標を z' としておこう。すると,上記の条件 は $c(t-\tau) \leq \sqrt{(z'-z)^2 + R^2} \leq ct$ となるので, $\sqrt{c^2(t-\tau)^2 - R^2} \leq |z'-z| \leq \sqrt{c^2t^2 - R^2}$ となる。つまり,電流路の二箇所から影響を受けることになる。なお,Rが大きくなってくる と,この二箇所は連続し,さらに $ct \leq R$ となると,この条件を満たす領域は消滅する。なお, 下記の定積分の区間で「,」で複数の区間が書かれているものは,複数の不連続な区間での定積 分をまとめて記述したものである。計算上は上付きの値の代入結果を加算し,下付きの値の代入結果を減算すればよい。

$$\begin{split} A_{z} &= \frac{\mu_{0}Q_{0}}{4\pi\tau} \int dz' \frac{1}{\sqrt{(z'-z)^{2} + R^{2}}} \\ &= \frac{\mu_{0}Q_{0}}{4\pi\tau} \times \begin{cases} \log\left(z'-z + \sqrt{(z'-z)^{2} + R^{2}}\right) \Big|_{z-\sqrt{c^{2}(t-\tau)^{2} - R^{2}}, z+\sqrt{c^{2}(t-\tau)^{2} - R^{2}}} \\ \log\left(z'-z + \sqrt{(z'-z)^{2} + R^{2}}\right) \Big|_{z-\sqrt{c^{2}t^{2} - R^{2}}} \\ \log\left(z'-z + \sqrt{(z'-z)^{2} + R^{2}}\right) \Big|_{z-\sqrt{c^{2}t^{2} - R^{2}}} \\ \log\left(z'-z + \sqrt{(z'-z)^{2} + R^{2}}\right) \Big|_{z-\sqrt{c^{2}t^{2} - R^{2}}} \\ \exp\left(z'-z + \sqrt{(z'-z)^{2} + R^{2}}\right) \left[\frac{z+\sqrt{c^{2}t^{2} - R^{2}}}{(z-\sqrt{c^{2}t^{2} - R^{2}})} \right] \\ = \frac{\mu_{0}Q_{0}}{4\pi\tau} \times \begin{cases} \log\left(\frac{ct + \sqrt{c^{2}t^{2} - R^{2}}}{(ct - \sqrt{c^{2}t^{2} - R^{2}})} \left[c(t-\tau) - \sqrt{c^{2}(t-\tau)^{2} - R^{2}}\right] \right] \\ \exp\left(z'-z + \sqrt{c^{2}t^{2} - R^{2}}\right) \left[c(t-\tau) + \sqrt{c^{2}(t-\tau)^{2} - R^{2}}\right] \\ \exp\left(z'-z + \sqrt{c^{2}t^{2} - R^{2}}\right) \left[c(t-\tau) + \sqrt{c^{2}(t-\tau)^{2} - R^{2}}\right] \\ \exp\left(z'-z + \sqrt{c^{2}t^{2} - R^{2}}\right) \\ \exp\left(z'-z + \sqrt{c^{2}t^{2}$$

なお,式中に書かれた各範囲は, $z \leq 0$ で,かつ原点を囲む球殻を除いた次のような領域で ある。

ただし,この話は観測点が原点に近くなってくると成立しなくなってくる。例えば,原点の すぐ近傍では,電流路の一箇所からしか影響を受けない。丁寧に検討していくと,上記以外に 次のようないくつかの領域に分けられることが分かる。なお,rは原点からの距離である。

$$A_{z} = \frac{\mu_{0}Q_{0}}{4\pi\tau} \times \begin{cases} \log\left(z' - z + \sqrt{(z'-z)^{2} + R^{2}}\right) \Big|_{z=\sqrt{c^{2}(t-\tau)^{2} - R^{2}}}^{z=\sqrt{c^{2}(t-\tau)^{2} - R^{2}}} \\ \log\left(z' - z + \sqrt{(z'-z)^{2} + R^{2}}\right) \Big|_{z=\sqrt{c^{2}(t-\tau)^{2} - R^{2}}, 0}^{z=\sqrt{c^{2}(t-\tau)^{2} - R^{2}}, 0} \\ \\ \text{spherical shell, } z \leq 0, \text{ and inside cylinder} \\ \log\left(z' - z + \sqrt{(z'-z)^{2} + R^{2}}\right) \Big|_{z=\sqrt{c^{2}t^{2} - R^{2}}}^{0} \\ \\ \text{spherical shell elsewhere above} \\ 0 & \text{outside sphere, } 0 \leq z \end{cases}$$
$$= \frac{\mu_{0}Q_{0}}{4\pi\tau} \times \begin{cases} \log\frac{c(t-\tau) - \sqrt{c^{2}(t-\tau)^{2} - R^{2}}}{(ct-\sqrt{c^{2}t^{2} - R^{2}})} \\ \log\frac{c(t-\tau) - \sqrt{c^{2}(t-\tau)^{2} - R^{2}}}{(ct-\sqrt{c^{2}t^{2} - R^{2}})} \\ \log\frac{(\sqrt{z^{2} + R^{2} - z)}\left[c(t-\tau) - \sqrt{c^{2}(t-\tau)^{2} - R^{2}}\right]}{(ct-\sqrt{c^{2}t^{2} - R^{2}})\left[c(t-\tau) + \sqrt{c^{2}(t-\tau)^{2} - R^{2}}\right]} \\ \text{spherical shell, } z \leq 0, \text{ and inside cylinder} \\ \log\frac{\sqrt{z^{2} + R^{2} - z}}{ct-\sqrt{c^{2}t^{2} - R^{2}}} \\ \log\frac{\sqrt{z^{2} + R^{2} - z}}{ct-\sqrt{c^{2}t^{2} - R^{2}}}} \\ \text{spherical shell elsewhere above} \\ 0 & \text{outside sphere, } 0 \leq z \end{cases}$$

まず, A_z は, すべての境界で連続的な関数となっている。Lorentz 条件の成立を検証して おこう。div $\mathbf{A} = \partial A_z/\partial z$ であるから,上記 A_z の中で,z に依存するものを探してみると, spherical shell のところだけである。また $\partial \phi/\partial t$ も同じ領域にしか存在しない。したがって, その領域だけで検証しておけばよいことになる。

$$\operatorname{div} \boldsymbol{A} + \varepsilon_0 \mu_0 \frac{\partial \phi}{\partial t} = \frac{\mu_0 Q_0}{4\pi\tau} \left[\frac{1}{\sqrt{z^2 + R^2} - z} \left(\frac{z}{\sqrt{z^2 + R^2}} - 1 \right) + \frac{1}{r} \right] = 0$$

電場と磁場は、これらのポテンシャルを利用して簡単に計算することができる。

図 8.2 非対称励振により発生する電場は、注入先より注入元へ向う。

この電場を図 8.2 に示しておこう。

$$\begin{split} & \mathcal{B} = \operatorname{rot} \mathbf{A} = -t \frac{\partial A_z}{\partial R} = \frac{\mu_0 Q_0}{4\pi \tau} t \\ & \left\{ \begin{array}{l} \left[-\frac{1}{[c(t-\tau) - \sqrt{c^2(t-\tau)^2 - R^2}]\sqrt{c^2(t-\tau)^2 - R^2}} \right] & \text{inside sphere} \\ +\frac{1}{(ct-\sqrt{c^2t^2 - R^2})\sqrt{c^2t^2 - R^2}} \right] \\ & -\frac{1}{[c(t-\tau) - \sqrt{c^2(t-\tau)^2 - R^2}]\sqrt{c^2(t-\tau)^2 - R^2}} \\ +\frac{1}{[c(t-\tau) + \sqrt{c^2(t-\tau)^2 - R^2}]\sqrt{c^2(t-\tau)^2 - R^2}} \\ & -\frac{1}{(\sqrt{z^2 + R^2} - z)\sqrt{z^2 + R^2}} + \frac{1}{(ct-\sqrt{c^2t^2 - R^2})\sqrt{c^2t^2 - R^2}} \\ & -\frac{1}{(\sqrt{z^2 + R^2} - z)\sqrt{z^2 + R^2}} + \frac{1}{(ct-\sqrt{c^2t^2 - R^2})\sqrt{c^2t^2 - R^2}} \\ & -\frac{1}{[c(t-\tau) - \sqrt{c^2(t-\tau)^2 - R^2}]\sqrt{c^2(t-\tau)^2 - R^2}} \\ & +\frac{1}{[c(t-\tau) - \sqrt{c^2(t-\tau)^2 - R^2}]\sqrt{c^2(t-\tau)^2 - R^2}} \\ & +\frac{1}{[c(t-\tau) + \sqrt{c^2(t-\tau)^2 - R^2}]\sqrt{c^2(t-\tau)^2 - R^2}} \\ & +\frac{1}{[c(t+\sqrt{c^2t^2 - R^2})\sqrt{c^2t^2 - R^2}} + \frac{1}{(ct-\sqrt{c^2t^2 - R^2})\sqrt{c^2t^2 - R^2}} \\ \\ & -\frac{1}{(ct+\sqrt{c^2t^2 - R^2})\sqrt{c^2t^2 - R^2}} + \frac{1}{(ct-\sqrt{c^2t^2 - R^2})\sqrt{c^2t^2 - R^2}} \\ \\ & \left[-\frac{1}{[c(t+\sqrt{c^2t^2 - R^2})\sqrt{c^2t^2 - R^2}} + \frac{1}{(ct-\sqrt{c^2t^2 - R^2})\sqrt{c^2t^2 - R^2}} \right] \\ \\ & \text{outside above regions} \end{split}$$

ただし、磁場のtは、z軸を中心とする円の接線方向の単位ベクトルである。

この場合,電荷注入の影響は明らかに光速で伝わっていくのが見られる。注入電流と原点の 電荷から発生された電磁場は,それらを中心とし距離 ct の領域にのみ存在している。また,比 較的近傍では,当初,クーロン電場に加えて,過渡的な電場や磁場が存在するが,それらは次 第に消え去っていく。最後にはクーロン電場のみが生き残ることになる。

もし,全空間がごく低いコンダクタンスを有する媒質で埋められていると,誘電緩和は明ら かにこの電磁場の支配領域でしか起きないため,誘電緩和現象には光速の影響が現れる。これ が,誘電緩和の謎の答えである。

8.3 電磁波の発生

前節で示したように,電荷を電流で注入すると,そのまわりに電磁場が形成され,光速で伝播していく。しかし,注入が終了すると,この電磁場はいずれ定常になってしまう。もし,電流を注入したり,引き抜いたりする作業を,交互に行うと,電磁場が交互に作られ,光速で伝わっていく。特に,電磁場の振幅が,遠方で1/rに比例して行くときに,これを電磁波と呼ぶ。

定常的に変化する源の作るポテンシャルは,式 (8.1),および式 (8.3)から,遅延時間 r/c が 発生することを考えて,

$$\phi = \frac{Q}{4\pi\varepsilon_0} \frac{e^{j\omega(t-r/c)}}{r}$$
$$A = \frac{\mu_0 I \, d\mathbf{r}}{4\pi} \frac{e^{j\omega(t-r/c)}}{r}$$

で与えられる^{*2}。

8.3.1 電気モーメントの作る電磁波

先程の類推から、電気モーメントを考え、その二つの間を結ぶ直線上に交番する電流を流して、電荷注入と引き抜きを行う。正電荷が $(0,0,\delta/2)$ に、負電荷が $(0,0,-\delta/2)$ にあり、その間を電流が結んでいるものとする。また、モーメントの長さ δ は十分小さいとする。電荷を微分すると電流になるので、モーメントの大きさを p = pk とすると、以下のように与えられる。

$$Q(t) = \frac{p}{\delta} e^{j\omega t}$$
$$I(t) = \frac{p}{\delta} j\omega e^{j\omega t}$$

これらの作るポテンシャルは、定常的であることを考えると、次のような式で計算できる。

^{*2} 物理系の書では, $e^{j\omega t}$ などは $e^{-i\omega t}$ と記載される。したがって、物理系の人は, i = -j として変換して読ん でほしい。

$$\begin{split} \phi &= \frac{p}{4\pi\varepsilon_0 \delta} \left\{ \frac{e^{j\omega[t-r(\delta/2)/c]}}{r(\delta/2)} - \frac{e^{j\omega[t-r(-\delta/2)/c]}}{r(-\delta/2)} \right\} \doteq -\frac{1}{4\pi\varepsilon_0} (\boldsymbol{p} \cdot \nabla) \frac{e^{j\omega(t-r/c)}}{r} \\ &= \frac{1}{4\pi\varepsilon_0} e^{j\omega(t-r/c)} \left(1 + \frac{j\omega}{c}r\right) \frac{(\boldsymbol{p} \cdot \boldsymbol{r})\boldsymbol{r}}{r^3} \\ \boldsymbol{A} &= \frac{\mu_0 \boldsymbol{p}}{4\pi\delta} \int_{-\delta/2}^{\delta/2} dz' \frac{j\omega e^{j\omega(t-r(z')/c)}}{\sqrt{(z'-z)^2 + R^2}} \\ &= \frac{\mu_0 \boldsymbol{p}}{4\pi} \frac{j\omega}{r} e^{j\omega(t-r/c)} \end{split}$$

ここで, r(z') は次のように, 観測点から z 軸上 z' にある源点までの距離である。 $r(\delta/2)$, $r(-\delta/2)$ なども同様である。

$$r(z') = \sqrt{(z-z')^2 + R^2}$$

これらが作る電場および磁場は

$$\operatorname{grad}[(\boldsymbol{p}\cdot\nabla)f] = \operatorname{grad}[(\boldsymbol{p}\cdot\boldsymbol{r})\frac{1}{r}\frac{\partial f}{\partial r}] = \boldsymbol{p}\frac{1}{r}\frac{\partial f}{\partial r} + (\boldsymbol{p}\cdot\boldsymbol{r})\boldsymbol{r}\frac{1}{r}\frac{\partial}{\partial r}(\frac{1}{r}\frac{\partial f}{\partial r})$$

を用いて、次の形で与えられる。

$$\begin{split} \boldsymbol{E} &= -\operatorname{grad} \phi - \frac{\partial \boldsymbol{A}}{\partial t} = \frac{1}{4\pi\varepsilon_0} \operatorname{grad} \left[(\boldsymbol{p} \cdot \nabla) \frac{e^{j\omega(t-r/c)}}{r} \right] - \frac{\mu_0 \boldsymbol{p}}{4\pi} \frac{j\omega}{r} \frac{\partial}{\partial t} e^{j\omega(t-r/c)} \\ &= -\frac{e^{j\omega t}}{4\pi\varepsilon_0} \left[\boldsymbol{p} + \frac{\boldsymbol{r}}{r} (\boldsymbol{p} \cdot \boldsymbol{r}) \frac{\partial}{\partial r} \right] \left[\left(1 + \frac{j\omega r}{c} \right) \frac{e^{-j\omega r/c}}{r^3} \right] + \frac{\mu_0 \boldsymbol{p}}{4\pi} \frac{\omega^2}{r} e^{j\omega(t-r/c)} \\ &= -\frac{e^{j\omega t}}{4\pi\varepsilon_0} \left\{ \boldsymbol{p} \left(1 + \frac{j\omega r}{c} \right) \frac{e^{-j\omega r/c}}{r^3} \right. \\ &+ \frac{\boldsymbol{r}}{r} (\boldsymbol{p} \cdot \boldsymbol{r}) \left[\frac{\omega^2}{c^2} \frac{e^{-j\omega r/c}}{r^2} - 3 \left(1 + \frac{j\omega r}{c} \right) \frac{e^{-j\omega r/c}}{r^4} \right] \right\} + \frac{\boldsymbol{p}}{4\pi\varepsilon_0} \frac{\omega^2}{c^2 r} e^{j\omega(t-r/c)} \\ &= \frac{1}{4\pi\varepsilon_0} \left[\left(1 + \frac{j\omega r}{c} \right) \frac{3(\boldsymbol{p} \cdot \boldsymbol{r})\boldsymbol{r} - r^2 \boldsymbol{p}}{r^5} + \frac{\omega^2}{c^2} \frac{r^2 \boldsymbol{p} - (\boldsymbol{p} \cdot \boldsymbol{r})\boldsymbol{r}}{r^3} \right] e^{j\omega(t-r/c)} \\ &\boldsymbol{B} = \operatorname{rot} \boldsymbol{A} = \frac{\boldsymbol{r}}{r} \times \frac{\partial \boldsymbol{A}}{\partial r} \\ &= j\omega \frac{\mu_0}{4\pi} \frac{\boldsymbol{r} \times \boldsymbol{p}}{r} \frac{\partial}{\partial r} \frac{e^{j\omega(t-r/c)}}{r} = j\omega \frac{\mu_0}{4\pi} \frac{\boldsymbol{r} \times \boldsymbol{p}}{r} \frac{e^{j\omega(t-r/c)}}{r^2} \left(-\frac{j\omega r}{c} - 1 \right) \\ &= j\omega \frac{\mu_0}{4\pi} \left(1 + \frac{j\omega r}{c} \right) \frac{\boldsymbol{p} \times \boldsymbol{r}}{r^3} e^{j\omega(t-r/c)} \end{split}$$

電場 E を見てみると、1/距離³、1/距離²、1/距離¹に比例して減衰する項があることが分か る。最初の項のグループはモーメントが作る静電場の式と一致している。次のグループは近接 場と呼ばれる。最後のグループは、A の時間微分から出てきた項であり、比例係数は $\mu_0 p/4\pi$ であったが、これを $p/4\pi\epsilon_0 c^2$ に書き換えている。これは電磁波と呼ばれる。これら三種類の 電磁場は $c/\omega = \lambda/2\pi$ であることを考えると、 $\lambda/2\pi$ ぐらいの距離で、互いにほぼ等しくなり、 それより遠方では電磁波、近接場、静電場の順に見えなくなっていく。

磁場 **B** は, 1/距離² と 1/距離 の減衰項から構成されているが,前者はビオ・サバールの法 則に対応する微小電流要素の作る静磁場そのものであり,後者は電磁波である。

非常に遠方では、電磁波しか観測されなくなるが、電場は z 方向の成分からのみとなり、磁場は z 軸を周回する方向の成分からのみになる。また、これらの実部を見てみると、ともに $\cos \omega (t - r/c)$ と、同相で変化し、さらに電場が z 方向を向くとき、磁場が z 軸を周回するの と逆方向を向く。

ポインティングベクトルは, EとBの実部同士の積から, 次のようになる。

$$\boldsymbol{S} = \frac{1}{\mu_0} \operatorname{Re}(\boldsymbol{E}) \times \operatorname{Re}(\boldsymbol{B}) = \boldsymbol{t} \times \boldsymbol{k} \, \left(\frac{p_0}{4\pi}\right)^2 \frac{c}{\varepsilon_0} \left(\frac{\omega}{c}\right)^4 \frac{R}{r^3} \cos^2[\omega(t-r/c)]$$

Sは1/距離²に比例し、その方向は常に電場と磁場の外積の方向、つまりz軸から離れる方向を向く。

8.3.2 微小電流ループの作る電磁波

交流電流 $Ie^{j\omega t}$ の流れる電流ループも電磁波を発生する。この電流の作るベクトルポテン シャルは、スカラー場のストークスの定理 $\oint_C \phi d\mathbf{r} = \int d\mathbf{S} \times \operatorname{grad} \phi$ を利用して、次式のよう になる。

$$\begin{split} \mathbf{A} &= \oint_{\mathcal{C}} \frac{\mu_0 I}{4\pi} d\mathbf{r}' \frac{e^{j\omega(t-|\mathbf{r}-\mathbf{r}'|/c)}}{|\mathbf{r}-\mathbf{r}'|} = \frac{\mu_0 I}{4\pi} \int_{\mathcal{S}} d\mathbf{S}' \times \operatorname{grad}_{\mathbf{r}'} \frac{e^{j\omega(t-|\mathbf{r}-\mathbf{r}'|/c)}}{|\mathbf{r}-\mathbf{r}'|} \\ &\doteq -\frac{\mu_0 I}{4\pi} \int_{\mathcal{S}} d\mathbf{S}' \times \operatorname{grad} \frac{e^{j\omega(t-r/c)}}{r} = -\frac{\mu_0}{4\pi} \mathbf{m} \times \operatorname{grad} \frac{e^{j\omega(t-r/c)}}{r} \\ &= \frac{\mu_0}{4\pi} e^{j\omega(t-r/c)} \left(1 + \frac{j\omega r}{c}\right) \frac{\mathbf{m} \times \mathbf{r}}{r^3} \end{split}$$

これらから、ただちに電場と磁場が計算できる。

$$\begin{split} \boldsymbol{E} &= -\frac{\partial \boldsymbol{A}}{\partial t} \\ &= -j\omega\frac{\mu_0}{4\pi} \left(1 + \frac{j\omega r}{c}\right) \frac{\boldsymbol{m} \times \boldsymbol{r}}{r^3} e^{j\omega(t-r/c)} \\ \boldsymbol{B} &= \operatorname{rot} \boldsymbol{A} \\ &= \frac{\mu_0}{4\pi} \left[\left(1 + \frac{j\omega r}{c}\right) \frac{3\boldsymbol{r}(\boldsymbol{m} \cdot \boldsymbol{r}) - r^2 \boldsymbol{m}}{r^5} - \frac{\omega^2}{c^2} \frac{\boldsymbol{r}(\boldsymbol{m} \cdot \boldsymbol{r}) - r^2 \boldsymbol{m}}{r^3} \right] e^{j\omega(t-r/c)} \end{split}$$

今度は磁場 B のほうに、1/距離³、1/距離²、1/距離¹ に比例して減衰する項のグループがある。それぞれ、ループの作る静磁場、近接場、電磁波に対応している。電場 E に現れている $1/距離^2$ 、1/距離¹の項のグループは近接場、電磁波に対応している。

第9章

導体とポテンシャル

導体のある場合のポテンシャルの解析は思ったより面倒である。恐らく,導体という概念 が,相対論などのような時空対称システムに似合わないからであろう。しかし,そういってい ても始まらないので,可能な限り,導体をポテンシャルで扱う方法を示そう。

9.1 導体内でのポテンシャル

まず,通常の導体中の電場,磁場を考えよう。導体中では,前章でも述べたように次式が成 立する。

$$J = \sigma E$$

この式を電流連続の法則(current continuity law)の式へ代入しよう。

$$\operatorname{div} \boldsymbol{J} + \frac{\partial \rho}{\partial t} = \sigma \operatorname{div} \boldsymbol{E} + \frac{\partial \rho}{\partial t} = \frac{\sigma}{\varepsilon_0} \rho + \frac{\partial \rho}{\partial t} = 0$$

これは,誘電緩和 (dielectric relaxation)の式である。したがって,十分時間が経つと, $\rho = 0$ としてよい。つまり,電荷は導体の表面だけに存在するとしてよい。さらに, σ が十分大きい と, $J = \sigma E$ の関係から,有限の J を達成するためには E は限りなく小さくなる。

導体は σ の非常に大きな材料であるから、この誘電緩和は一瞬にして起こることとなる。また、**J** が有限になるためには、**E** がほとんど 0 でなければならなくなる。逆に、**E** = 0 を仮定すると、まず、 $\varepsilon_0 \operatorname{div} \mathbf{E} = \rho$ より、導体の内部では

$$\rho = 0$$

が得られる。この結果は誘電緩和の最終値と同じ結論である。さらに電磁誘導の式 rot $m{E}=-\partial m{B}/\partial t$ の左辺が 0となるから次式が得られる。

$$\frac{\partial \boldsymbol{B}}{\partial t} = 0$$

つまり、磁場が時間変動しないという磁場凍結(freezing of magnetic field)の原理が導かれ る。さらに、マクスウェル方程式の rot **B** 式を時間微分したものに **E** や **B** の条件を代入する ことにより、 $\partial J/\partial t = 0$ が誘導できる。なお、超伝導体中では **B** = 0 が成立したが、これは 超伝導体が単なる抵抗 0 の導体ではないことを示している。

さて、時間変動する場に対しては $\partial/\partial t \rightarrow j\omega$ と置くことができる。この場合、ほぼ直流に 近い周波数の成分についても $\mathbf{B} = 0$ が誘導できる。この状態を、特に**準静的**(quasi-static) と呼ぶ。以上の結果から、電荷は導体表面にだけしか存在しないことが分かった。また、準静 的な場合には、電流も導体表面にだけしか存在しない。以後、準静的な条件で議論する。

9.2 導体表面でのポテンシャル

導体の表面を考えよう。ここで、表面を挟むように置かれた円板状の領域を考える。ここで、電磁誘導の式の積分形を適用してみる。電場の表面垂直方向の成分は外積に効かないこと、導体内の電場は0であること、円板は十分薄いことから、その体積積分は限りなく小さくできることを考慮すると、導体外の電場に対し、次の式が得られる。

$$\boldsymbol{E}_t = 0$$

また,同じ形状の領域に,磁場の発散積分が0であることを適用してみると,磁場の表面平行の成分は内積に効かないこと,導体内の磁場は0であることから次の式が得られる。

$$B_n = 0$$

これら二つの式が,導体表面付近の空間側の電場磁場が満たすべき条件である。空間中の電磁場に対し,これらの条件は境界条件(boundary condition)と呼ばれる。さらに,同じ円板状の領域に電場の発散積分を適用してみると,面電荷密度に関する次の式が得られる。

$$\sigma = \varepsilon_0 E_n$$

同様に、磁場の回転積分を求めてみると、面電流密度に関する次の式が得られる。

$$oldsymbol{K} = oldsymbol{n} imes rac{oldsymbol{B}_t}{\mu_0}$$

これらの関係を,図 9.1 に示す。

次に導体内のポテンシャルについて考えよう。このとき次の式が成立する。

$$E = -\operatorname{grad} \phi - j\omega A = 0$$

$$B = \operatorname{rot} A = 0$$
(9.1)

図 9.1 導体表面付近の電場と面電荷および磁場と面電流。厳密に静的な場合には **B**₀ という固定磁場が追加される。

第二式より A を適当なスカラー関数 φ の勾配で表すことができる。

$$A = \operatorname{grad} \chi$$

これを第一式に代入すると、次式を得ることができる。

$$\phi = -j\omega\chi$$

特に準静的もしくは静的な場合には,式 (9.1)より grad $\phi = 0$ となり, $\phi = \text{const}$ となる。これらの様子を図 9.2 に示す。

導体表面では、これらのポテンシャルがそのまま、導体外へも接続していくことになるが、 E_n 、 B_t とも導体表面に誘導された電荷分、電流分の不連続を持っている。前者の不連続は $\partial \phi / \partial n$ の不連続で説明でき、後者の不連続は $\partial A_t / \partial n$ の不連続で説明できる。

9.3 導体と電荷の作る静的なスカラーポテンシャル

導体のそばに電荷を置くと、導体上には正負逆の電荷が分布して誘導される。スカラーポテ ンシャルは、これらの電荷によって構成されるが、誘導電荷(induced charge)は、電場が導 体表面に垂直になるように配置されなければならない。動的な場合には、電場にはベクトルポ テンシャルの効果が入ってくるので、結構面倒なことになるが、静的な場合には導体表面で φ = const となる。

例えば,一個の電荷と無限平面状の導体の作るスカラーポテンシャルを見てみよう。まず, 孤立電荷の作るスカラーポテンシャルは次式で与えられる。

図 9.2 導体内のポテンシャル。電場と異なり,ポテンシャルは表面で連続でなければならない。面垂直方向の微分は表面で不連続となる。

図 9.3 下半分に導体のある場合の点電荷の作るスカラーポテンシャル。あまり値が大きく なる点電荷付近は描画を省いている。

$$\phi = \frac{Q}{4\pi\varepsilon_0} \frac{1}{r} = \frac{Q}{4\pi\varepsilon_0} \frac{1}{\sqrt{x^2 + y^2 + (z-a)^2}}$$

ただし、導体は xy 平面にあり、孤立電荷の高さは z = a とする。

導体上の誘導電荷はこの *z* < 0 側のポテンシャルを打ち消す必要があるので,誘導電荷が *z* < 0 に作るポテンシャルは次の形をしていなければならない。

$$\phi = -\frac{Q}{4\pi\varepsilon_0} \frac{1}{\sqrt{x^2 + y^2 + (z-a)^2}}$$

誘導電荷は上下対称のポテンシャルを作っているはずなので,z > 0のポテンシャルはこの式の $z \rightarrow -z$ とすれば得られる。

$$\phi = -\frac{Q}{4\pi\varepsilon_0} \frac{1}{\sqrt{x^2 + y^2 + (z+a)^2}}$$

これらの総和は $z \leq 0$ で当然0,またz > 0では次のようになる。

$$\phi = \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{\sqrt{x^2 + y^2 + (z-a)^2}} - \frac{1}{\sqrt{x^2 + y^2 + (z+a)^2}} \right]$$

このポテンシャルを図 9.3 に示す。

この結果より、誘導電荷密度は $-\varepsilon_0 \operatorname{grad} \phi|_{z=0}$ より計算することができる。

$$\sigma = -\frac{Q}{4\pi} \frac{2a}{\sqrt{x^2 + y^2 + a^2}}^3$$

当然のことながら、これをこの平面上で積分すると、-Qとなる。

なお,この空間側におけるポテンシャルは,導体を鏡面に見立てたときの鏡像に位置に –*Q*の電荷を置き,誘導電荷を0としたときのポテンシャルの総和と一致する。こうした計算法は 鏡像法と呼ばれる。

9.4 導体と平行な電流素片の作る静的なベクトルポテンシャル

無限平面の導体のそばに電流素片を置いた場合を考えよう。まず,電流素片を xy 平面に平 行に x 方向に置いた場合を扱おう。当然,この電流素片は x 成分しか持たないから, A_x しか 発生しない。しかも,電流素片の位置に + 成分があるだけなので,点電荷が作るスカラーポ テンシャルのように, 1/r に比例する。

$$A_x = \frac{\mu_0 I \, ds}{4\pi} \frac{1}{r} = \frac{\mu_0 I \, ds}{4\pi} \frac{1}{\sqrt{x^2 + y^2 + (z-a)^2}}$$

絨'上の誘導電流 (induced current) は x 方向のものだけで十分であるので, 領域で $A_y = 0$, $A_z = 0$ であろう。したがって, 導体内では rot $\mathbf{A} = 0$ の条件より, A_x は x のみの関数で, さ らに div $\mathbf{A} = 0$ より $A_x = \text{const}$ でなければならない。導体中で $A_x = 0$ としても特に問題が ないので, 今後, そのようにする。

このようにすると,前節のスカラーポテンシャルと同様な扱いで,空間側のベクトルポテン シャルを次のように求めることができる。

$$A_x = \frac{\mu_0 I \, ds}{4\pi} \left[\frac{1}{\sqrt{x^2 + y^2 + (z-a)^2}} - \frac{1}{\sqrt{x^2 + y^2 + (z+a)^2}} \right]$$

これから磁場を計算すると、次のようになる。

$$\boldsymbol{B} = \frac{\mu_0 I \, ds}{4\pi} \left[\frac{(0, a - z, y)}{\sqrt{x^2 + y^2 + (z - a)^2}^3} + \frac{(0, z + a, -y)}{\sqrt{x^2 + y^2 + (z + a)^2}^3} \right]$$

この場合も,空間側のポテンシャルと磁場は,元の電流素片の鏡像の位置に,逆向きの電流素 片を置いたときの重ね合わせの場となっている。つまり,鏡像法が有効である。

得られたベクトルポテンシャルを図 9.4 に示す。図からは読みとりづらいかも知れないが、 z = 0に向って単調に減少してきた A_x が、 $z \le 0$ から 0 となる。このように $\partial A_x/\partial z$ が変 化するところには、誘導電流が存在するはずである。あるいは、同じことであるが、A から z = 0近傍の B を求めても、導体表面に誘導電流が流れていることが計算でき、その値は次 のようになる。

$$K_x = -\frac{I\,ds}{4\pi} \frac{2}{\sqrt{x^2 + y^2 + a^2}}$$

図 9.4 下半分にある導体に平行な電流が作るベクトルポテンシャル。ベクトルの大きさは 図 9.3 の *φ* と比例する。

9.5 導体と垂直な電流素片の作る静的なベクトルポテンシャル

電流素片が導体に垂直な場合の取り扱いは少しやっかいである。というのは誘導電流が導体 平面に沿ってしか流れられないからである。つまり,電流素片の作る *A_z* に対し,誘導電流は 面対称な *A_x*, *A_y* なるベクトルポテンシャルを作り出すからである。まず,電流素片の作る *A_z* はいままでの取り扱いと同様であり,次のようになる。

$$A_z = \frac{\mu_0 I \, ds}{4\pi} \frac{1}{r} = \frac{\mu_0 I \, ds}{4\pi} \frac{1}{\sqrt{x^2 + y^2 + (z - a)^2}}$$

これ以外に *z* 方向を向いた電流成分はないから,この式は空間のみならず,導体の中にまで成 立する。

導体内には磁場がないはずなので、この A_z の作る磁場を消去するように A_x , A_y が発生しているはずである。簡単な計算法は、 $\mathbf{A} = \operatorname{grad} \chi$ の式より得られる $A_z = \partial \chi / \partial z$ を利用し、 χ を求める。

$$\chi = \int_{z} dz \, A_{z} = -\frac{\mu_{0} I \, ds}{4\pi} \log \left[(a-z) + \sqrt{x^{2} + y^{2} + (z-a)^{2}} \right]$$

これから, 導体中の A_x, A_y を求めることができる。

$$A_x = -\frac{\mu_0 I \, ds}{4\pi} \frac{x}{\sqrt{x^2 + y^2 + (z - a)^2} \left[(a - z) + \sqrt{x^2 + y^2 + (z - a)^2} \right]}$$
$$A_y = -\frac{\mu_0 I \, ds}{4\pi} \frac{y}{\sqrt{x^2 + y^2 + (z - a)^2} \left[(a - z) + \sqrt{x^2 + y^2 + (z - a)^2} \right]}$$

図 9.5 下半分にある導体に垂直な電流が作るベクトルポテンシャル。スカラーポテンシャルと異なり、ベクトルが導体内にも存在する。

導体上の電流は,おそらく導体面の上下に対称的なポテンシャルを作るであろうから,空間に 作られるポテンシャルは上式の −*z* → +*z* とすればよい。

$$\begin{aligned} A_x &= -\frac{\mu_0 I \, ds}{4\pi} \frac{x}{\sqrt{x^2 + y^2 + (z+a)^2} \left[(z+a) + \sqrt{x^2 + y^2 + (z+a)^2} \right]} \\ A_y &= -\frac{\mu_0 I \, ds}{4\pi} \frac{y}{\sqrt{x^2 + y^2 + (z+a)^2} \left[(z+a) + \sqrt{x^2 + y^2 + (z+a)^2} \right]} \end{aligned}$$

これと、もともとの電流素片が作った A_z の三つを組み合わせると、空間中の電磁場を計算す ることがきる。

$$\boldsymbol{B} = \frac{\mu_0 I \, ds}{4\pi} (-y, x, 0) \left[\frac{1}{\sqrt{x^2 + y^2 + (z-a)^2}} + \frac{1}{\sqrt{x^2 + y^2 + (z+a)^2}} \right]$$

図 9.5 に、このベクトルポテンシャルの計算結果を示す。誘導電流の存在は、この図の場合、一層、見づらくなっているが、 A_x にのみ着目すると、z = 0 付近で内向きに最大となっているので、その辺に誘導電流があることが予想される。 $\partial A/\partial z$ の変化量よりきちんと計算すると、次のようになる。

$$\mathbf{K} = -\frac{I\,ds}{4\pi} \frac{2\,(x,y,0)}{\sqrt{x^2 + y^2 + a^2}}$$

計算された磁場を見ると、元の電流素片の作る磁場と、それと鏡像の位置に置かれた同じ向 きの電流素片の作る磁場の和になっているが、いままでは、鏡像は逆の符号を持っていたのに 対し、ここでは同じ向き、つまり同符号である。また、ベクトルポテンシャルのほうは鏡像の 作るポテンシャルがない代わりに,平面状の誘導電流の作るポテンシャルが補完している。つ まり,いままでの鏡像法のようには処理できないのである。

前節の鏡像法と同様に,元の電流源と逆向きの鏡像を利用した計算法も試みたが,残念なが ら,これまでのところ,よい結果は得られていない。

9.6 方形柱ソレノイドの作る磁場

断面が円形のソレノイドの代わりに、断面が $a \times b$ の長方形のソレノイドの作るベクトルポ テンシャルを考えよう。電流はこの長方形に沿って流れるので、 K_x 、 K_y しか存在しない。ま ず、 K_x の作るポテンシャルを考えよう。 K_x は $y = \pm b$ の位置に-aからaの区間存在する。 z方向の直線の作るポテンシャルは、直線電荷の作るポテンシャルと同様にrを直線からの距 離として、 $-\log r$ に比例するから、 A_x は次のようになる。また、 A_y も同様にして得られる。

$$\begin{aligned} A_x &= \frac{\mu_0 K_x}{4\pi} \int_{-a}^{a} dx' \log \frac{(x'-x)^2 + (y-b)^2}{(x'-x)^2 + (y+b)^2} \\ &= \frac{\mu_0 K_x}{4\pi} \left[2(b-y) \left(\tan^{-1} \frac{a-x}{b-y} + \tan^{-1} \frac{a+x}{b-y} \right) \right. \\ &\left. -2(b+y) \left(\tan^{-1} \frac{a-x}{b+y} + \tan^{-1} \frac{a+x}{b+y} \right) \right. \\ &\left. + (a-x) \log \frac{(a-x)^2 + (b-y)^2}{(a-x)^2 + (b+y)^2} + (a+x) \log \frac{(a+x)^2 + (b-y)^2}{(a+x)^2 + (b+y)^2} \right] \end{aligned}$$

$$\begin{aligned} A_y &= \frac{\mu_0 K_x}{4\pi} \int_{-b}^{b} dx' \log \frac{(y'-y)^2 + (x+a)^2}{(y'-y)^2 + (x-a)^2} \\ &= \frac{\mu_0 K_x}{4\pi} \left[-2(a-x) \left(\tan^{-1} \frac{b-y}{a-x} + \tan^{-1} \frac{b+y}{a-x} \right) \right. \\ &+ 2(a+x) \left(\tan^{-1} \frac{b-y}{a+x} + \tan^{-1} \frac{b+y}{a+x} \right) \\ &- (b-y) \log \frac{(a-x)^2 + (b-y)^2}{(a+x)^2 + (b-y)^2} - (b+y) \log \frac{(a-x)^2 + (b+y)^2}{(a+x)^2 + (b+y)^2} \right] \end{aligned}$$

このベクトルポテンシャルを図 9.6 に示すが,およそ,円柱のソレノイドの作るポテンシャル と酷似しており,長方形に近いところでそれに合うように変形した形となる。

これらから計算した磁場は Bz のみになり、次のようになる。

図 9.6 方形ソレノイドの作るベクトルポテンシャルの上面図。

$$B_{z} = \frac{\mu_{0}K}{2\pi} \left[\left(\tan^{-1} \frac{a-x}{b-y} + \tan^{-1} \frac{b-y}{a-x} \right) + \left(\tan^{-1} \frac{a+x}{b-y} + \tan^{-1} \frac{b-y}{a+x} \right) + \left(\tan^{-1} \frac{a-x}{b+y} + \tan^{-1} \frac{b+y}{a-x} \right) + \left(\tan^{-1} \frac{a+x}{b+y} + \tan^{-1} \frac{b+y}{a+x} \right) \right]$$

長方形の中にいるときには、すべての tan⁻¹ の中が正になり、前から二項ずつの和が $\pi/2$ となるため $B_z = \mu_0 K$ となる。また長方形外にいるときは、tan⁻¹ の分母や分子を構成している項の一から三個が負となり、結局、二個の tan⁻¹ が $-\pi/2$ となるため、合計は 0 となる。

同じ命題を鏡像法で解いてみよう。四枚のいずれの導体を鏡としてもよいが,ここでは xz面に平行な二枚の導体を鏡と考えよう。これらの鏡に対し,yz面に流れる電流の反鏡像を考える。多重反射する結果,yz面に平行な x = aを通る無限平面上の y方向の連続的な面電流と、x = -aを通る無限平面上の -y方向の連続的な面電流とになる。

これらの面電流の作るポテンシャルは Ay だけとなり, 簡単に計算できる。

$$A_y = \frac{\mu_0 K}{2} (|x+a| - |x-a|) = \mu_0 K \begin{cases} -a & (x \le -a) \\ x & (-a \le x \le a) \\ a & (a \le x) \end{cases}$$

ソレノイド内部のみに関心がある場合には,これで十分である。その際,鏡面となっている導体上の面電流密度は,磁場の値から推定するのがもっとも簡単である。また,鏡面としなかった導体上の面電流密度は, $\partial A_y/\partial x$ から計算でき,結果は注入電流と一致する。

ソレノイド外部のポテンシャルについては、 A_y は上記のままである。また $A_z = 0$ である。 A_x はいままでのように A_y を y で積分した χ を利用し、それを x で微分することで得られる。ただし、積分定数は x の関数でもよいことを利用し、 A_x の連続性を確保している。

図 9.7 方形ソレノイドの作るベクトルポテンシャルの別解の上面図。

$$A_x = \mu_0 K \begin{cases} b & (y \le -b) \\ -y & (-b \le y \le b) \\ -b & (b \le y) \end{cases}$$

ここで示したベクトルポテンシャルを図 9.7 に示すが,これらのポテンシャルを使って外部の磁場を計算すると,確かに0となる。また, $\partial A_x/\partial y$ から K_x を計算すると, $\mu_0 K$ となり, 鏡像法を使わない場合の結果と一致する。

ただし, K_x も K_y も,周辺では方形の延長線にまで存在することになっており,やや問題 がある。これについては, χ をもう少し上手に選ぶなど,今後の改善の余地がありそうである が,計算はすこぶる速い。

この節の計算で分かるように,鏡像法を使った計算のほうがはるかに簡単である。一般に, 導体の存在する系のポテンシャルの計算は次のように行うのが楽そうである。

- 1. 鏡像法など、何らかの方法を利用して、導体表面で $E_t = 0$, $B_n = 0$ となるような空間 側のポテンシャルを求める。
- 2. 導体内で電磁場が0となることを利用して、導体内のポテンシャルを求める。
- 3. ポテンシャルの勾配の不連続性を利用して,面電荷密度と面電流密度を求める。

あるいは,

- 1. 鏡像法など、何らかの方法を利用して、導体表面で $E_t = 0, B_n = 0$ となるような空間 側のポテンシャルを求める。
- 2. 導体表面の電磁場から、面電荷密度と面電流密度を求める。

3. 導体があることを無視して, これらの面電荷や面電流が作るポテンシャルを再計算する。

いずれの方法でも,正しいポテンシャルを得ることができるが,前者では,無限遠にも源があ

るような解となる。一方,後者の場合には,無限遠には源がない十分遠方で0となってくれる ようなポテンシャルが得られる。

なお,後者の場合でも,無限に長い直線電流や無限に広い平面を流れる電流がある場合に は,無限遠に反対向きの対向電流がなければならないので,対数関数や距離に比例するポテン シャルしか得られない。

9.7 導波管中の電磁波

導波管(wave guide)と呼ばれる中空の管状の導体の内部には、電磁波を伝搬する能力があ る。導体の抵抗がほとんど無視できるときには、電磁波はほとんど減衰せずに伝搬する。伝搬 している電磁波の角周波数を ω としよう。一般にはいろいろな周波数のものが混ざっていて もよいが、その場合は以下の解析結果を組み合わせればよいだけである。すると、時間微分一 回につき、 $j\omega$ を掛けることになる。また導波管方向を z とし、そちら方向の波の角波数を kとしよう。この場合は z 方向の空間微分一回につき、-jkを掛けることになる。

前節でも述べたように,まずは導波管内でつじつまの合う解を求めるのがよい。そのために は,ファラデーゲージのベクトルポテンシャルを求めるのが便利である。ファラデーゲージは $\phi = 0$ であるが,空間中では,これもローレンス条件を満たすのでローレンスゲージのポテン シャルでもある。

ポテンシャルが満たすべき方程式は $\phi = 0$ より,次のようになる。

$$\nabla_t^2 \mathbf{A}_t - k^2 \mathbf{A}_t + \frac{\omega^2}{c^2} \mathbf{A}_t = 0$$

$$\nabla_t^2 A_z - k^2 A_z + \frac{\omega^2}{c^2} A_z = 0$$
(9.2)

$$\operatorname{div} \boldsymbol{A}_t - jkA_z = 0 \tag{9.3}$$

また,境界条件は,ファラデーゲージのポテンシャルが電場に比例することから, $A_t = 0$,さらに $(\text{rot } A)_n = 0$ である。

一般に、任意のベクトル場は非発散場と非回転場に分けることができる。したがって、 A_t も非発散場と非回転場に分かることができる。非発散場は div $A_t = 0$ であるので、式 (9.3) よ り $A_z = 0$ となる。

 $A_z = 0$ であると, $E_z = 0$, つまり電場が進行方向垂直成分だけになり, **TE** 波 (transverse electric wave) と呼ばれる。また, rot $A_t = 0$ であると, 磁場が伝播方向垂直となり, **TM** 波 (transverse magnetic wave) と呼ばれる。さらに, 両条件が成立する場合は, 電場も磁場も 伝播方向垂直となり, **TEM** 波 (transverse electric magnetic wave) と呼ばれる。

この方法による解析の結果,導波管内面の電荷密度と電流密度が分かると,改めて,面電荷 が作るスカラーポテンシャルとベクトルポテンシャルは面電流が作るという,原理原則に基づ くポテンシャルが計算できる。時間と *z* 方向の変動を exp[*j*(ω*t* − *kz*)] と仮定しているので, 式 (9.2) の形の方程式を満たす解の集合で与えられる。この解は円柱関数と呼ばれる超越関数 であり,取り扱いはあまり楽ではない。したがって,本書では,特別な場合を除いて,この原 理原則に基づくポテンシャルの計算は行わないこととする。

以下にストリップ線路および方形導波管に対し、具体的に作業してみよう。

9.7.1 TEM 波

まず,もっともやさしい TEM 波から議論しよう。TEM 波は方形導波管では発生しないので,y = 0, b に平行に導体の置かれたストリップ線路で考えよう。もっとも簡単な波は、上下の導体間にy 方向に一様な電場が発生する場合である。

ファラデーゲージのベクトルポテンシャルは電場に比例するので,電場と同じく *y* 成分のみを持つ。

$$\phi = 0$$
$$\boldsymbol{A} = \alpha e^{j(\omega t - kz)} (0, 1, 0)$$

ここで、 A_z はローレンス条件を利用して、 A_t から求めた。

A_u が波動方程式を満たしていることから次の式が成立する。

$$\frac{\omega^2}{c^2} = k^2$$

進行波のみを対象にすると、 $\omega = ck$ である。これらから、ストリップ線路内の電磁場を求めると、

$$\mathbf{E} = \alpha e^{j(\omega t - kz)} (0, -j\omega, 0)$$
$$\mathbf{B} = \alpha e^{j(\omega t - kz)} (jk, 0, 0)$$

導体表面での E_n , B_t より, 面電荷密度, 面電流密度を計算することができる。ストリップ線路表面に発生する面電荷密度は上面と下面に正負対称に発生するが, 下面では次のようになる。

$$\sigma = -j\omega\varepsilon_0 \alpha e^{j(\omega t - kz)}$$
$$K_z = -jk\frac{1}{\mu_0}\alpha e^{j(\omega t - kz)}$$

導体内のポテンシャルは、空間の A_t を導体内まで延長し、そこで、 χ を求め、それらの微分から計算する。その結果は次のようになる。

t	1	٠ أ	t 1	t	t	t	t	t	t	t	Ì	t	t	t
1	1	1	1	1	1	1	1	1	1	1	1	Î	1	1
T			T	Ī	T	T	T	Ţ	T	T		T	T	Ţ
t	1	1	† †	t	t	t	t	1	t	t	t	t	t	t
t	1	· 1	† †	t	t	t	t	t	t	t	t	t	t	t
t	1	· 1	† †	t	t	t	t	t	t	t	t	t	t	t
t	1	· 1	† †	t	t	t	t	t	t	t	t	t	t	t
t	1	• 1	+ +	t	t	t	t	t	t	t	t	t	t	t
٠		•	•	÷	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
				•	•									
				•	•	•	٠	٠	•	•	•	•	٠	
•					•						•	•		

図 9.8 ストリップ線路のベクトルポテンシャルの別解および電磁場(実線ベクトルは電場,破線ベクトルは磁場)。スカラーポテンシャルは描かれていないが,極板に平行に上に高くなっていく。

$$\chi = \alpha e^{j(\omega t - kz)} y$$

$$\phi = -j\omega \alpha e^{j(\omega t - kz)} y$$

$$\mathbf{A} = \alpha e^{j(\omega t - kz)} (0, 1, jky)$$

以上で、ストリップ線路内の TEM 波のポテンシャルと電磁場の計算は終了する。

電荷があるのにスカラーポテンシャルがないことに不満を感じるかも知れない。その場合に は、ここで得られた面電荷と面電流が作るポテンシャルを再計算すると、原理原則に基づくポ テンシャルが計算できる。これらはそれぞれ波動方程式を満たすが、角周波数 ω , z 方向の角 波数 k を仮定しているので, $x \ge y$ の二階微分のみが生き残る。さらに x 方向に変動のない 解を対象としているので y の二階微分のみが生き残る。これよりこれらのポテンシャルは源の あるところを除いて y の一次式で与えられることが導かれる。 $y = 0 \ge y = a$ に存在する源が 作り出す対称な場を加えることになるので、

$$\phi = -j\omega\alpha e^{j(\omega t - kz)} \begin{cases} 0 & (y \le 0) \\ y & (0 \le y \le a) \\ a & (a \le y) \end{cases}$$
$$A_z = -jk\alpha e^{j(\omega t - kz)} \begin{cases} 0 & (y \le 0) \\ y & (0 \le y \le a) \\ a & (a \le y) \end{cases}$$

が得られる。図 9.8 に,これらのポテンシャルおよび電磁場を示す。なお,スカラーポテン シャルの等ポテンシャル面は,極板に平行で等間隔となる。他の TE 波, TM 波でも,こうし て得られた面電荷,面電流からポテンシャルを再計算することも可能であるが,大変なだけ で,余り効果もないので,以後は省略する。 なお,当然のことながらこれらが作る電磁場や面電荷,面電流が前半の議論のものと一致 する。

9.7.2 TE 波

同様な手順で、まず電場に比例したファラデーゲージのベクトルポテンシャルから始めよ う。 $E_z = 0$ より、 $A_z = 0$ である。したがって A_x と A_y のみを求めればよい。これらは、そ れぞれ波動方程式を満たさなければならないので、x、y 方向に正弦波関数の形となる。また 境界条件より、 A_x は y = 0, b で 0、 $\partial A_x / \partial x$ は x = 0, a で 0 でなければならない。これらの 条件から、次の形が得られる。

$$\mathbf{A} = e^{j(\omega t - kz)} \left(\alpha \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, \, \beta \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b}, \, 0 \right)$$

ローレンス条件より $\alpha(m\pi/a) + \beta(n\pi/b) = 0$ となる。これより、次のように書き替えてよい。

$$\boldsymbol{A} = \alpha e^{j(\omega t - kz)} \left(-\frac{n\pi}{b} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, \, \frac{m\pi}{a} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b}, \, 0 \right)$$

もちろん, α は再定義されている。

A_x, *A_y* が波動方程式を満たしていることから次の式が成立する。

$$\left(\frac{\omega}{c}\right)^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + k^2$$

また、これらより、導波管内の電磁場を求めることができる。

$$\boldsymbol{E} = \alpha e^{j(\omega t - kz)} \left(j\omega \frac{n\pi}{b} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, -j\omega \frac{m\pi}{a} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b}, 0 \right)$$

$$\boldsymbol{B} = \alpha e^{j(\omega t - kz)} \left(jk \frac{m\pi}{a} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b}, jk \frac{n\pi}{b} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, \\ \left[\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 \right] \cos \frac{m\pi x}{a} \cos \frac{n\pi y}{b} \right)$$

図 9.9 に,最低モードである TE₁₀ モードのポテンシャルおよび電磁場を示す。 これから,導体表面の面電荷密度と面電流密度を求めることができる。まず下面の値を示す。

$$\rho = -\varepsilon_0 \alpha j \omega e^{j(\omega t - kz)} \frac{m\pi}{a} \sin \frac{m\pi x}{a}$$
$$\mathbf{K}_t = \alpha \frac{1}{\mu_0} e^{j(\omega t - kz)} \left(\left[\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 \right] \cos \frac{m\pi x}{a}, 0, -jk \frac{m\pi}{a} \sin \frac{m\pi x}{a} \right)$$

Γ	٠	t	t	t	1	Î	Î	Î	Î	1	t	t	•
	٠	ŧ	t	t	1	1	1	1	1	1	t	t	•
	٠	t	t	t	1	1	1	1	1	1	t	t	•
	٠	t	t	1	1	1	1	1	1	1	t	t	•
	٠	t	t	t	1	1	1	1	1	t	t	t	
	٠	÷	t	1	1	1	1	1	1	t	t	t	
	٠	t	t	1	1	1	1	1	1	1	t	t	
	٠	t	t	t	t	1	1	1	1	1	t	t	
		÷	t	t	1	1	1	1	1	t	t	ŧ	•

t, t, t, t, t, t, t, t, t, ,	t,	t.	*
t, t, t, t, t, t, t, t, t, ,	t,	t,	*
t, t, t, t, t, t, t, t, t, ,	t,	t,	*
t, t, t, t, t, t, t, t, t, ,	t,	t,	*
t, t, t, t, t, t, t, t, t, ,	t,	t,	•
t, t, t, t, t, t, t, t, t, ,	t,	t.	•
t, t, t, t, t, t, t, t, t, ,	t,	t.	•
t, t, t, t, t, t, t, t, t, ,	t,	t.	•
t, t, t, t, t, t, t, t, ,	t,	t,	*

図 9.9 方形導波管 TE₁₀ のベクトルポテンシャルおよび電磁場(実線ベクトルは電場,破線ベクトルは磁場)。

上面の値は, *n* が偶数のとき反対称, 奇数のとき対称となる。 また, 左面の値は次のようになる。

$$\rho = \alpha \varepsilon_0 j \omega e^{j(\omega t - kz)} j \omega \frac{n\pi}{b} \sin \frac{n\pi y}{b}$$
$$\boldsymbol{K}_t = \alpha \frac{1}{\mu_0} e^{j(\omega t - kz)} \left(0, -\left[\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 \right] \cos \frac{n\pi y}{b}, \, jk \frac{n\pi}{b} \sin \frac{n\pi x}{b} \right)$$

右面の値は、m が偶数のとき反対称、奇数のとき対称となる。

9.7.3 TM 波

同じく方形導波管での TM_{mn} 波は, **A** のすべての成分が存在しうる。境界条件を満たす解 は次のようになる。

$$\boldsymbol{A} = e^{j(\omega t - kz)} \left(\alpha \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, \, \beta \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b}, \, \gamma \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right)$$

 $(rot A)_z = 0$ より, A_x と A_y には関係が出てくる。また, ローレンス条件が成立することから, 次の形のみが許される。

$$\mathbf{A} = \frac{\alpha}{j\omega} e^{j(\omega t - kz)} \left(jk \frac{m\pi}{a} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b}, jk \frac{n\pi}{b} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b}, \\ \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right] \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right)$$

もちろん、 α は再定義されている。また分母の $j\omega$ は以後のほぼすべての計算結果に現れる $j\omega$ を消すためである。

図 9.10 方形導波管 TM₁₁ のベクトルポテンシャルおよび電磁場(実線ベクトルは電場, 破線ベクトルは磁場)。

A_x, *A_y* が波動方程式を満たしていることから次の式が成立する。

$$\left(\frac{\omega}{c}\right)^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + k^2$$

また、これらより、導波管内の電磁場を求めることができる。

$$\boldsymbol{E} = \alpha e^{j(\omega t - kz)} \left(-jk\frac{m\pi}{a}\cos\frac{m\pi x}{a}\sin\frac{n\pi y}{b}, -jk\frac{n\pi}{b}\sin\frac{m\pi x}{a}\cos\frac{n\pi y}{b}, -\left[\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2\right]\sin\frac{m\pi y}{a}\sin\frac{n\pi y}{b}\right)$$
$$\boldsymbol{B} = \alpha e^{j(\omega t - kz)} \left(\frac{j\omega}{c^2}\frac{n\pi}{b}\sin\frac{m\pi x}{a}\cos\frac{n\pi y}{b}, -\frac{j\omega}{c^2}\frac{m\pi}{a}\cos\frac{m\pi x}{a}\sin\frac{n\pi y}{b}, 0\right)$$

図 9.10 に,最低モードである TM₁₁ モードのポテンシャルおよび電磁場を示す。

これから, 導体表面の面電荷密度と面電流密度を求めることができる。まず下面の値を示す。

$$\rho = -\varepsilon_0 \alpha j k e^{j(\omega t - kz)} \frac{n\pi}{b} \sin \frac{m\pi x}{a}$$
$$\mathbf{K}_t = \alpha \frac{1}{\mu_0} e^{j(\omega t - kz)} \left(0, 0, -\frac{j\omega}{c^2} \frac{n\pi}{b} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} \right)$$

上面の値は, n が偶数のとき反対称, 奇数のとき対称となる。

また、左面の値は次のようになる。

$$\rho = \alpha \varepsilon_0 j \omega e^{j(\omega t - kz)} j \omega \frac{n\pi}{b} \sin \frac{n\pi y}{b}$$
$$\mathbf{K}_t = \alpha \frac{1}{\mu_0} e^{j(\omega t - kz)} \left(0, 0, \frac{j\omega}{c^2} \frac{m\pi}{a} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right)$$

右面の値は,*m* が偶数のとき反対称,奇数のとき対称となる。どの壁面でも *K_z* しかないこと に注意してほしい。

9.8 空洞中の電磁波

中空の導体で囲まれた領域には電磁波を閉じ込める効果がある。といっても導体には多少の 抵抗が存在するから,電磁波は徐々に減衰するし,あらかじめ何かの方法で電磁波を励振させ ておかなければ減衰する電磁波すら存在できない。実際には空洞に小さな穴を開け,そこから 電磁波を入れるが,穴の影響はきわめて小さく,また電磁波の減衰を補うだけのわずかなエネ ルギーしか入れない。こうした状況下では,導体の抵抗がまったくなく,電磁波は減衰しない ものとして取り扱っても問題は生じない。

計算の手法は,導波管中の電磁場と同じである。波長の整数倍,あるいはそれに半波長や 1/4 波長を加えたところで,磁場や電場が境界条件を満たす場合,こうした電磁場は永久に存 在しうることになる。波長が空洞の長さとうまく合わない場合には,合うように周波数を調整 すればよい。具体的な計算は,各自で試みてほしい。

第10章

相対性原理

今迄の章で,電磁気学の基本的な話はすべて終了した。本章の相対性原理の話は,いわば, おまけである。しかし,電磁気学が古典力学から始まった壮大な物理学の中で,唯一,最初か ら相対性原理とまったく矛盾しない体系であったことを考えると,やはり,この話を除外する 訳にはいかない。また,電磁気学が相対性原理を使うと,いかにきれいにまとめられるかも, 同時に味わってほしい。

10.1 相対性原理

アインシュタイン(Einstein)の導出した特殊相対性原理は、二つの互いに一定速度で移動 している慣性系の間の座標変換の仕方を与えたものであり、次の原理から導出された。

- 光速で直線移動するものは、いずれの座標系で観察しても光速で移動する。(光速不 変性)
- •相互の座標変換は空間座標と時間座標の一次変換で与えられる。(線形性)
- 二つの座標系はまったく対等であり、どちらかをより基準的であるということは不可能
 である。(相対性)

光速不変性は,宇宙をかなりの速度で走っている地球上で,走行方向および走行直角方向のい ずれの方向で光の速度を測っても,同じ値が得られた,という実験結果を説明するために導入 された。

いま,図 10.1 に示すように、S 系に対し x 軸方向に等速度 V で走っている S' 系を考える。 S' 系座標軸はすべて S 系の座標と平行になっているものとし、また t = 0 および t' = 0 で、 両原点は一致しているとする。S' 系で原点から x' 軸方向および y' 軸方向に L だけ離れた点 にそれぞれ鏡を置き、原点から光を発射し、往復時間を測る。すると実験結果から、その値は 等しくなる。これを S 系から観測してみよう。まず、S 系での光速は S' 系での光速 c と等し

140

図 10.1 S' 系は S 系に対し, x 軸方向に V の速度で移動している。

い。x' 軸方向に走る光が t 秒で鏡に到達したとする。この間, 鏡は Vt だけ遠ざかる。した がって, ct = L + Vt。これから, 行きに要する時間は L/(c - V)。同様に, 鏡から原点への 戻りに要する時間は, 原点が近寄ってくるだけ短縮し L/(c + V), 合計すると $2Lc/(c^2 - V^2)$ の時間がかかる。

y' 葱御向に走る光の伝搬時間も L/c ではない。というのはやはり鏡が移動し,S 系で見る と光は斜めに移動する必要があるからである。ピタゴラスの定理より, $(ct)^2 = L^2 + (Vt)^2$ が 成立するから,これから伝搬時間は $L/\sqrt{c^2 - V^2}$ となる。戻りも原点が移動し斜めに移動す る必要があるが,合同な三角形となるから,同じ伝搬時間が得られる。そこでこれらを合計す ると $2L/\sqrt{c^2 - V^2}$ が得られる。しかし,困ったことにこの時間は先に求めた x' 方向の伝搬 時間と一致しない。つまり S' 系で同時に原点に到着した光が,S 系で観測すると,異なる時刻 に到着するように見える。

この矛盾を解決するために導入されたのが、距離の短縮という概念である。これは、S'系 での距離を S 系で観測すると、移動方向に短縮して見えるという概念である。最初に**ロー** レンツ(Lorentz)がこの概念を提唱したときには、とんでもない概念であると反論された。 しかし、現在は正しい考えであると理解されている。S' 系での L が S 系では x 方向にだ け $L\sqrt{1-(V/c)^2}$ に短縮すると考えると、x' 方向の伝搬時間が補正され、両者ともちょうど $2L/\sqrt{c^2 - V^2}$ となる。距離の短縮を認めると、S' 系での座標点 (x', y', z') は、S 系で観測す ると (x' + Vt, y', z') には見えず、(x' $\sqrt{1-(V/c)^2}$ + Vt, y', z') に見えることになる。これを (x, y, z) と置くことにより、S' 系と S 系の間の座標変換を求めることができる。

一般に S' 系と S 系の間の座標変換は次式で与えられるはずである。

x' = Ax + Bt, y' = y, z' = z, t' = Ct + Dx

ここで, $x' \ge x$ の間, $t' \ge t$ の間の係数 $A \ge C$ が 1 でないかも知れない, $t' \bowtie x$ の影響が 入っているかも知れないというのがアインシュタインの大胆な仮説である。なお, y' や z' は $そちら方向に移動していないことから自明であるが, 仮に <math>x' \ge 同様な変換を仮定しても, 同じ$ $結果が得られる。まず, S' 系の原点 <math>x' = 0 \ge S$ 系で観測すると, x = Vt に見えることから, $A \ge B$ の関係が得られる。さらに逆に S 系の原点 $x = 0 \ge S'$ 系で観測すると, 相対性原理 から x' = -Vt' に見えることから, $B \ge C$ の関係が得られる。これらの結果は B = -VA, B = -VC である。A を基準にすれば, C = A が得られる。

A と D は光速不変の原理から誘導できる。S'系の原点から任意の方向に発射された光は, どちらの方向に発射されても光速で伝搬するから,次の関係が成立する。

$$x^{\prime 2} + y^{\prime 2} + z^{\prime 2} = c^2 t^{\prime 2}$$

これに変換関係を代入すると, x, y, z, tの二次式が得られる。

この光の伝搬をS系で観測してもやはり光速で伝搬するように見えるはずであるから,次式 を満たすはずである。

$$x^2 + y^2 + z^2 = c^2 t^2$$

これらx, y, z, tの二式は当然一致すべきである。

係数同士を比較すると、*A*、*B*、*C*、*D*に関わる三つの関係式が得られる。先の関係式と連 立させることにより、これらの定数の値が決定できる。なお、*A*の符号に正負の可能性が残る が、V = 0で (x', y', z', t') は (x, y, z, t) と等しくなるはずであるから、*A* は正である。こうし て得られた次の変換式は**ローレンツ変換**(Lorentz transform)と呼ばれる。

$$x' = \gamma(x - \beta ct), \qquad y' = y, \qquad z' = z, \qquad ct' = \gamma(ct - \beta x) \tag{10.1}$$

ただし, β, γは今後度々出現する次のような係数である。

$$\beta = \frac{V}{c}$$
$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

ローレンツ変換の**逆変換**(reverse transform)は,**順変換**(forward transform)から簡単 に求められる。

 $x = \gamma(x' + \beta ct'),$ y = y', z = z', $ct = \gamma(ct' + \beta x')$

10.2 **四元ベクトル**

相対論的座標変換では、三次元空間における回転で、*x* と *y* が混ざるように、空間と時間が 混ざってくる。このような場合には、ベクトルの概念を使うと便利である。当然、時間成分を 加えた**四元ベクトル**(four-vector)となる。ただし、時間成分は、空間成分とはやや異なる扱 いを受け、変換も異なることに注意したい。 力学におけるベクトルの代表は位置ベクトルである。これに対応する四元ベクトルは (x,y,z,ct)である。(r,ct)とも表す。時間項が*c*倍されているのは、空間と同じ次元になっ て、空間座標との対応がよくなるからである。これをまとめて x^n と記載する。また、基準系 に対し移動している方の系 (x',y',z',ct')の座標をまとめる際は、ギリシャ文字を使って x^{ν} としよう。

上付きのサフィックスはべき乗の意味ではなく,このベクトルが,すぐ後に説明される反変 ベクトルと呼ばれるものであるからである。また,*dr*など太字で書いた量は,古典的な三次 元のベクトルとする。

一般には x = 0, t = 0 が必ずしも x' = 0, t' = 0 に対応していなくても相対論は成立する ので,前節の式 (10.1) の変換式には定数のずれが入りうる。しかしその場合でも,位置ベク トルの微小量に対しては同じ変換式が成立する。位置ベクトルの微小量 dx^n と dx^ν を次式の ように定義する。左辺は本来 ($dx^n | n = 1, ..., 4$) などと記載すべきであろうが,簡単に (dx^n) などと省略した。

$$(dx^{n}) = (dx, dy, dz, cdt)$$
$$(dx^{\nu}) = (dx', dy', dz', cdt')$$

すると、これらの間には式 (10.1) の変換式が成立する。

$$dx^{\nu} = \sum_{n} u_n^{\nu} dx^n \tag{10.2}$$

ここで

$$u_n^{\nu} = \frac{\partial x^{\nu}}{\partial x^n}$$

である。

なお、四元の世界では、通常の行列やベクトル表示をせず、成分を記載することが多いの で、これらの積が現れる都度、 \sum の記号が出現し、うっとうしくなる。このため、上下に同じ サフィックスが現れたときには、 \sum の記号がなくても、そのサッフィクスに関する合計をす るものと約束する。なお、分数の分母に上(下)付き変数がある場合は、分数全体の下(上) 付きとみなす。これを**アインシュタイン規約**(Einstein convention)という。例えば式 (10.2) は次式のようになるが、nが上下にあるため、 \sum_n が省略されていることになる。

$$dx^{\nu} = u_n^{\nu} dx^n$$

この変換係数(transform coefficient) u_n^{ν} を反変順変換係数(contravariant forward transform coefficient)と呼び、 ν 行 n 列の行列で書くと、次のようになる(以後、上下にサフィックスがある場合には、上のサフィックスを行、下のサフィックスを列とする)。

$$(u_n^{\nu}) = \left(\frac{\partial x^{\nu}}{\partial x^n}\right) = \left(\begin{array}{ccc} \gamma & 0 & 0 & -\gamma\beta\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ -\gamma\beta & 0 & 0 & \gamma\end{array}\right)$$

このように座標変換の際, u^ν_n によって変換されるベクトルを, **反変ベクトル** (contravariant vector) と呼ぶのである。また,反変ベクトルは A^ν のように,サフィックスを上に付ける約 束になっている。

これに対し,後に紹介されるある種のベクトルは, $u_{\nu}^{n} = \partial x^{n}/\partial x^{\nu}$ によって座標変換される。この変換係数は dx^{ν} を dx^{n} へ逆変換する際に用いられるものであり,**反変逆変換係数** (contravariant reverse transform coefficient)と呼ぶ。逆変換係数で変換されるベクトルは 共変ベクトルと呼び, A_{ν} のように,サフィックスを下に付ける約束になっている。この行列 の成分を求めてみると,順変換行列の $-\gamma\beta$ のところだけが符号反転し,+ $\gamma\beta$ となるだけである。

$$(u_{\nu}^{n}) = \left(\frac{\partial x^{n}}{\partial x^{\nu}}\right) = \left(\begin{array}{cccc} \gamma & 0 & 0 & \gamma\beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \gamma\beta & 0 & 0 & \gamma\end{array}\right)$$

改めて、四元ベクトルとは順変換係数で変換される反変ベクトルや逆変換係数で変換される共 変ベクトルのことである。

逆変換行列 (u_{ν}^{n}) は順変換行列 (u_{n}^{ν}) の逆行列になっている。これは $\partial x^{n}/\partial x^{m} = \delta_{m}^{n}$ である ことと、この式の左辺が、 x^{ν} を媒介変数として次のように変形できることから、明かである。

$$\frac{\partial x^n}{\partial x^m} = \frac{\partial x^n}{\partial x^\nu} \frac{\partial x^\nu}{\partial x^m} = u^n_\nu u^\nu_m \qquad (=\delta^n_m)$$

速度の四元ベクトルを考えよう。もともと、 $v_x = dx/dt$ などと定義されているが、これを そのまま第四成分に拡張すると $v_t = d(ct)/dt = c$ となって、第四成分だけ定数となってしま い、何かがおかしい。(dx, dy, dz, d(ct)) = (dr, d(ct)) は確かに四元ベクトルになっているが、 分母の dt はローレンツ変換不変ではないからである。そこで dt にきわめて近い概念で、かつ dt とは高速で僅かに異なるローレンツ変換不変の概念である世界時 ds なる概念が、分母とし て使われる。

$$ds = \sqrt{dt^2 - (dx^2 + dy^2 + dz^2)/c^2} = \sqrt{1 - \beta_v^2} dt$$

綛恰根の中は,微小距離の「絶対値の二乗」であるので,ローレンツ変換不変量であることは 容易に理解できよう。なお,上式で β_v = v/c である。β は座標変換の際の座標間の速度 V に 対応するものであるが,質点の速度 v に対応するものについては β_v を用いることとした。同 様に、 γ は座標変換の際の座標間の速度 V に対応するものであるが、質点の速度に対応しては $\gamma_v = 1/\sqrt{1-\beta_v^2}$ を定義する。

粒子の速度 v が光速に比べ十分遅い場合には、 $ds \doteq dt$ となる。四元ベクトル dx^n を、変換 不変量であってかつ dt にきわめて近い概念である ds で割ることにより、速度の四元ベクトル である**四元速度**(four-vector velocity) v^n を定義する。

$$(v^n) = \left(\frac{dx^n}{ds}\right) = \left(\frac{dx}{ds}, \frac{dy}{ds}, \frac{dz}{ds}, \frac{d(ct)}{ds}\right) = \gamma_v(\boldsymbol{v}, c)$$

四元速度に,静止質量 mを掛けたものは, 四元運動量 (four-vector momentum) p^n と呼 ばれる。

$$(p^n) = m(v^n) = m\gamma_v(\boldsymbol{v}, c)$$

四元運動量の空間成分は、低速では古典的運動量に一致する。第四成分は、 $p_t = mc^2 + (1/2)mv^2 + \cdots$ となるが、低速では固定分 mc^2 の差はあるものの、運動エネルギーに一致する。このため、この項は質点のエネルギーと考えられる。また、固定分、つまり静止時のエネルギー mc^2 は原子爆弾の概念の基礎となった有名な式でもある。

 v^n が四元ベクトルなら、その微小量も四元ベクトルである。したがって、四元速度をさらに s で微分することにより、四元ベクトルである四元加速度(four-vector acceleration) a^n が定義できる。

$$(a^n) = \left(\frac{dv^n}{ds}\right) = \left(\frac{d^2x^n}{ds^2}\right)$$

Fを古典的な力として、ニュートンの運動方程式は $d\mathbf{p}/dt = \mathbf{F}$ などと書ける。これから、 相対論における運動方程式も $dp^n/ds = F^n$ となることが予想できる。 (F^1, F^2, F^3) は低速で **F**に一致する四元力の空間成分であり、より厳密には $(F^1, F^2, F^3) = \gamma_v \mathbf{F}$ である。また古典 力学では、E を質点のエネルギーとして、 $dE/dt = \mathbf{F} \cdot \mathbf{v}$ が成立するので、四元運動量の第四 項がエネルギーに対応することを考慮して、 $dp^4/ds = \gamma_v \mathbf{F} \cdot \mathbf{v}/c$ が誘導できる。つまり、運 動方程式

$$m\frac{\partial v^n}{\partial s} = F^n$$

を満す四元力(four-vector force) F^n は、次式で定義される。

$$(F^n) = \gamma_v(\boldsymbol{F}, \boldsymbol{F} \cdot \boldsymbol{v}/c) \tag{10.3}$$

続いて,反変ベクトルの例として,任意のスカラー関数 f の空間微分 ∇f に対する四元空間微分演算子の変換を調べてみよう。S'系での ($\nabla' f, \partial f / \partial (ct')$) は次のように書ける。

$$\begin{split} \frac{\partial f}{\partial x'} &= \frac{\partial x}{\partial x'} \frac{\partial f}{\partial x} + \frac{\partial (ct)}{\partial x'} \frac{\partial f}{\partial (ct)} = \gamma \left(\frac{\partial f}{\partial x} + \beta \frac{\partial f}{\partial (ct)} \right) \\ \frac{\partial f}{\partial y'} &= \frac{\partial y}{\partial y'} \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z'} &= \frac{\partial z}{\partial z'} \frac{\partial f}{\partial z} = \frac{\partial f}{\partial z} \\ \frac{\partial f}{\partial (ct')} &= \frac{\partial x}{\partial (ct')} \frac{\partial f}{\partial x} + \frac{\partial (ct)}{\partial (ct')} \frac{\partial f}{\partial (ct)} = \gamma \left(\frac{\partial f}{\partial (ct)} + \beta \frac{\partial f}{\partial x} \right) \end{split}$$

ここで、 $\partial x / \partial x'$ などの計算にはローレンツ逆変換を利用している。この結果を見ると、(dr, d(ct)) などとは異なり、ローレンツ逆変換を受けることが分かる。

$$\partial_{\nu}f = u_{\nu}^{n}\partial_{n}f$$

ここにあるように、 $\partial/\partial x^{\nu}$ などは、しばしば ∂_{ν} などと略記される。このようにローレンツ変換で逆変換を受けるベクトルを、**共変ベクトル**(covariant vector)と呼び、 $\partial_n や \partial_{\nu}$ のように下付きサフィックスを付ける。

$$(\partial_n) = \left(\frac{\partial}{\partial x^n}\right) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial(ct)}\right) = \left(\nabla, \frac{\partial}{\partial(ct)}\right)$$
$$(\partial_\nu) = \left(\frac{\partial}{\partial x^\nu}\right) = \left(\frac{\partial}{\partial x'}, \frac{\partial}{\partial y'}, \frac{\partial}{\partial z'}, \frac{\partial}{\partial(ct')}\right) = \left(\nabla', \frac{\partial}{\partial(ct')}\right)$$

10.3 計量テンソル

計量テンソル (metric tensor) g_{nm} と呼ばれる行列を導入しよう。これは、この空間における不変量である長さ(厳密にはその2乗)を定義する行列である。三次元空間における長さは $dx^2 + dy^2 + dz^2$ で与えられるが、残念ながら、これはローレンツ変換に対して不変量ではない。これにちょっと補正した $-ds^2$ が不変量である。

$$-ds^{2} = dx^{2} + dy^{2} + dz^{2} - d(ct)^{2}$$

これを g_{nm}xⁿx^m のように書いて,係数を計量テンソルと呼ぶのである。

$$(g_{nm}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
(10.4)

紊後の座標系における g'_ν は次式が成立することから,この行列と同じ形になる。

$$-ds^{2} = dx'^{2} + dy'^{2} + dz'^{2} - d(ct')^{2}$$

これらを使うと,任意の反変ベクトル Aⁿ から共変ベクトル A_n を誘導することができる。

$$A_n = g_{nm} A^m$$

こうした作業を降階(lowering)と呼ぶ。

 $A_n = g_{nm}A^m$ が共変ベクトルであることは, $A_\nu = g_{\nu\mu}A^{\mu}$ が A_n を逆座標変換したものと一致することで確認できる。

$$A_{\nu} = g_{\nu\mu}A^{\mu} = g_{\nu\mu}u_{m}^{\mu}A^{m} = u_{\nu}^{n}g_{nm}A^{m} = u_{\nu}^{n}A_{n}$$

ここで三番目の等号は、具体的な行列の掛算により、 $g_{\nu\mu}u_m^{\mu} = u_{\nu}^n g_{nm}$ が成立することから 導かれる。

同様に,式(10.4)と同じ要素を持つ計量テンソル g^{nm} も定義され,これにより,次式のように共変ベクトルから反変ベクトルを得ることもできる。

$$A^n = g^{nm}A_m$$

これを**昇階**(raising)という。

なお、テンソル(tensor)とは、座標変換した場合、順変換係数や逆変換係数の組み合わ せだけで変換される行列のことである。行も列も順変換係数で変換される行列を**反変テンソ** ル(contravariant tensor)、ともに逆変換係数で変換される行列を**共変テンソル**(covariant tensor)、行が順変換係数で列が逆変換係数で変換される行列などを**混合テンソル**(mixed tensor)と呼ぶ。また、テンソルについても、計量テンソル g_{nm} や g^{nm} を用いて、サフィッ クスを上下することができる。

計量テンソル自身もテンソルという名前から想像できるように,テンソルである。g^{nm} は反 変テンソル,g_{nm} は共変テンソルであり,いずれも計算してみると,式 (10.4)の行列と同じ となる。実は,計量テンソルは世界時の不変原理を行列で表現したものである。相対論におけ る変換行列は,世界時の不変原理が保たれるように選ばれた変換であるので,変換後のテンソ ルは,当然,元と同じ形になるのである。

g^{nm} を降階するか, *g_{nm}* を昇階することで,混合テンソルが *gⁿ_m* が得られるが,これは下記の式からわかるように,降階して昇階する作業となり,結果として,何もしないことになるので,対角要素のみすべて1のクロネッカーデルタに等しい。

$$g_m^n = g^{nl}g_{lm} = \delta_m^n$$

次に四元ベクトル同士の内積を定義しておこう。三次元の内積は $\sum_n A_n B_n$ で与えられたが、四元ベクトルの内積は $A^n B_m$ で定義される。もちろん、総和記号は略されている。この

際,反変ベクトルと共変ベクトルの組み合わせであることに注意してほしい。ベクトルの要素 で書くと, $A_x B_x + A_y B_y + A_z B_z - A_t B_t$ である。このようにすると,この値は座標変換に 対し,不変量となる。同様に $A_n B^n$ も不変量である(実は $A^n B_n$ と一致する)。このように, サフィックスが上下に組み合わさると,不変量となるが,反変ベクトル同士,あるいは共変ベ クトル同士の積は不変量とはならないので,内積とはいわない。

これらの値が不変量であることは次のようにして証明できる。

$$A^{\nu}B_{\nu} = (u_{n}^{\nu}A^{n})(u_{\nu}^{m}B_{m}) = A^{n}(u_{n}^{\nu}u_{\nu}^{m})B_{m} = A^{n}\delta_{n}^{m}B_{m} = A^{n}B_{n}$$

アインシュタイン規約をふんだんに使っているので,注意してほしい。なお,四元ベクトルの 自身との四元内積を,「長さ」あるいは「絶対値」の二乗と呼ぶ。逆に,任意のベクトルとあ る四元ベクトルとの内積が不変量であるとき,この任意のベクトルが四元ベクトルであること もいえる。証明は各自,行ってみてほしい。

内積を反変ベクトルのみで定義しようとすると、 $B_n = g_{nm}B^m$ であるため $g_{nm}A^nB^m$ となり、 g_{nm} の絡んだ定義となる。

四元ベクトルの内積がローレンツ変換不変量であることから、いくつかのことがいえる。 例えば四元速度の長さの二乗は $(dx/ds)^2 + \cdots - (d(ct)/ds)^2 = (dx^2 + \cdots - d(ct)^2)/ds^2 = -c^2 ds^2/ds^2 = -c^2$ となる。また四元運動量の長さの二乗は $-(mc)^2$ となる。つまり、 $(p^4)^2 = (mc)^2 + (p^1)^2 + (p^2)^2 + (p^3)^2$ が成立する。これは E を粒子の相対論的エネルギー、p を相対論的運動量として、しばしば $(E/c)^2 = (mc)^2 + (p)^2$ と書かれる。特に m = 0のとき、 $E^2 = c^2 p^2$ となるが、先に 7.5 節と 7.6 節で、電磁場のエネルギーの流れ S と運動量 g の間に $S = c^2 g$ の関係が成立することを示したが、それとの対応から、電磁場は静止質量 0 の粒子に対応すると理解されている。

四元速度の長さの不変性の式 $g_{nm}v^nv^m = c^2$ の両辺を s で微分すると、次の式が誘導できる。

$$g_{nm}v^n\frac{dv^m}{ds} = 0$$

つまり,四元速度と四元加速度の内積は0となる。これから四元速度と四元力の内積も0となることが証明できる。

$$g_{nm}v^n F^m = 0$$

10.4 電磁気学の相対論

ローレンツ力の四元化をしてみよう。

$$\boldsymbol{F} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$

を四元化しようとすると,まず v が気になる。これを四元速度の成分 v^1, v^2, v^3 にするには全体を γ_v 倍すればよさそうである。こうすると F, v が四元速度になるだけでなく,右辺第一項の $\gamma_v E$ も, $v^4(E/c)$ と記載できるようになる。

ローレンツ力の式の両辺に*v*を内積として掛けてみよう。

$$oldsymbol{F}\cdotoldsymbol{v}=qoldsymbol{v}\cdotoldsymbol{E}$$

これを γ_v/c 倍すると次式のように四元力の時間項となる。

$$F^{4} = \gamma_{v} \mathbf{F} \cdot \mathbf{v}/c = q(v^{1} E_{x}/c + v^{2} E_{y}/c + v^{3} E_{z}/c)$$
(10.5)

このように,四元力 F^n を $(\gamma_v F, \gamma_v F \cdot v)$ とすると,ローレンツ力は次にようにまとめる ことができる。

$$F^n = q B^n_m v^m \tag{10.6}$$

ただし, B_m^n は電磁テンソル (electromagnetic tensor) と呼ばれ, 次のように定義される。

$$(B_m^n) = \begin{pmatrix} 0 & B_z & -B_y & E_x/c \\ -B_z & 0 & B_x & E_y/c \\ B_y & -B_x & 0 & E_z/c \\ E_x/c & E_y/c & E_z/c & 0 \end{pmatrix}$$

膃行と四元速度の積は,式 (10.5) に対応する。また,これから導かれる反変テンソル $B^{nm} = B_l^n g^{lm}$,共変テンソル $B_{nm} = g_{nl} B_m^l$ も、今後使われるので示しておこう。

$$(B^{nm}) = \begin{pmatrix} 0 & B_z & -B_y & -E_x/c \\ -B_z & 0 & B_x & -E_y/c \\ B_y & -B_x & 0 & -E_z/c \\ E_x/c & E_y/c & E_z/c & 0 \end{pmatrix}$$
(10.7)

この場合には第四列のみが符号反転している。

$$(B_{nm}) = \begin{pmatrix} 0 & B_z & -B_y & E_x/c \\ -B_z & 0 & B_x & E_y/c \\ B_y & -B_x & 0 & E_z/c \\ -E_x/c & -E_y/c & -E_z/c & 0 \end{pmatrix}$$
(10.8)

この場合には第四行のみが符号反転している。*B^{nm}* も *B_{nm}* も,反対称テンソルになっている ことに注意してほしい。このように,反変テンソル,共変テンソル,混合テンソルと複数存在 するのは,やや面倒であるが,第四列か第四行の符号が反転するだけであり,また式の変形に 当たっても,*g*を掛けるだけで簡単に変更できるので,慣れてほしい。 さて,このテンソルの各成分には電場や磁場の成分が入っているが,電場や磁場は,相対論 の世界では,どうやってもベクトルで表現することができず,このように4×4のテンソルに なってしまうのである。この後に現れるポテンシャルが,簡単なベクトルで表されることを考 慮すると,ここでも,ポテンシャルのほうが根源的な量であることを,感じざるを得ない。

電磁場を四元テンソルで表したが、マクスウェル方程式を、この電磁テンソルを使って表してみよう。電荷や電流などの源との関連の div *E* 式および rot *B* 式は、次のようになる。

$$\partial_m B^{nm} = \mu_0 J^n \tag{10.9}$$

ただし, J^n の成分は (J, $c\rho$) である。一方, 源の入っていない rot E 式および div B 式は, やや複雑な表現で与えられる。

$$\partial_l B_{nm} + \partial_n B_{ml} + \partial_m B_{ln} = 0 \tag{10.10}$$

やや形式的であるが、この式は完全反対称テンソル (antisymmetric tensor) と呼ばれる ϵ^{nmlk} を使って、アインシュタイン規約の形で書くことも可能であるが、これが $4 \times 4 \times 4 \times 4$ のテンソル^{*1}であることもあり、必ずしも見やすい形ではなため、あくまでも参考のために示す。

$\epsilon^{nmlk}\partial_m B_{lk} = 0$

なお, ϵ^{nmlk} はサフィックスが (1, 2, 3, 4) のとき 1, サフィックスがこの偶置換で与えられる ときも 1, 奇置換になっているときは -1, その他では 0 と定義されている。

ローレンツ力の座標変換を考えてみよう。この際,速度もローレンツ変換されるが, *Bⁿ*_m も 変換されるとしないと,うまく行かない。式 (10.6) の左から順変換係数を掛けると,左右は ローレンツ変換される。

$$F^{\nu} = u_{n}^{\nu} F^{n} = q u_{n}^{\nu} B_{m}^{n} v^{m} = q u_{n}^{\nu} B_{m}^{n} \left(u_{\mu}^{m} u_{l}^{\mu} \right) v^{l}$$
$$= q \left(u_{n}^{\nu} B_{m}^{n} u_{\mu}^{m} \right) \left(u_{l}^{\mu} v^{l} \right)$$

膃の等号の際, $B_m^n \geq v^m$ の間に $\left(u_\mu^m u_l^\mu\right)$ を入れたが, $\left(\partial x^m / \partial x^\mu\right) \left(\partial x^\mu / \partial x^l\right) = \delta_l^m$ であり, さらに $\delta_l^m v^l = v^m$ となることに注意してほしい。これより, *B* に対する変換則が得られる。

$$B^{\nu}_{\mu} = u^{\nu}_n B^n_m u^n_{\mu}$$

この変換則を利用すると、 B の座標変換が計算できる。

$$\begin{aligned} \left(B_{\mu}^{\nu}\right) &= \left(u_{n}^{\nu}B_{m}^{n}u_{\mu}^{m}\right) = \left(u_{n}^{\nu}B_{m}^{n}\right)\left(u_{\mu}^{m}\right) \\ &= \left(\begin{array}{cccc} -\gamma\beta E_{x}/c & \gamma(B_{z}-\beta E_{y}/c) & -\gamma(B_{y}+\beta E_{z}/c)\gamma E_{x}/c \\ -B_{z} & 0 & B_{x} & E_{y}/c \\ B_{y} & -B_{x} & 0 & E_{z}/c \end{array}\right) \left(u_{\mu}^{m}\right) \\ &\gamma E_{x}/c\gamma(E_{y}/c-\beta B_{z}) & \gamma(E_{z}/c+\beta B_{y}) & -\gamma\beta E_{x}/c \\ &= \left(\begin{array}{cccc} 0 & \gamma(B_{z}-\beta E_{y}/c) & 0 & B_{x} & \gamma(E_{y}/c-\beta B_{z}) \\ \gamma(B_{y}+\beta E_{z}/c) & -B_{x} & 0 & \gamma(E_{z}/c+\beta B_{y}) \\ \gamma(E_{y}/c-\beta B_{z}) & \gamma(E_{y}/c-\beta B_{z}) & \gamma(E_{z}/c+\beta B_{y}) & 0 \end{array}\right) \end{aligned}$$

これより、電磁場の各成分の変換則は次のようになる。

$$B'_{x} = B_{x}$$

$$B'_{y} = \gamma (B_{y} + \beta E_{z}/c)$$

$$B'_{z} = \gamma (B_{z} - \beta E_{y}/c)$$

$$E'_{x}/c = E_{x}/c$$

$$E'_{y}/c = \gamma (E_{y}/c - \beta B_{z})$$

$$E'_{z}/c = \gamma (E_{z}/c + \beta B_{y})$$

これらの式は,座標の移動方向とそれに垂直な成分に分けることにより,次のように表すこ ともできる。

$$B'_{\parallel} = B_{\parallel}$$
$$B'_{\perp} = \gamma \left(B - \frac{v}{c} \times \frac{E}{c} \right)_{\perp}$$
$$\frac{E'_{\parallel}}{c} = \frac{E_{\parallel}}{c}$$
$$\frac{E'_{\perp}}{c} = \gamma \left(\frac{E}{c} + \frac{v}{c} \times B \right)_{\perp}$$

次にポテンシャルの四元化を考えてみよう。式 (10.8) の電磁テンソルをポテンシャルで表 現すると,次式のようになる。

$$B_{nm} = \partial_n A_m - \partial_m A_n$$

ここで、 A_n の成分は $(A, -\phi/c)$ である。これを昇階して、式 (10.9) に代入すると、次式となる。

$$\partial_m \left(\partial^n A^m - \partial^m A^n \right) = \partial^n \left(\partial_m A^m \right) - \partial_m \partial^m A^n = \mu_0 J^n$$

昇階の結果, $(A^{\nu}) = (A, \phi/c)$ である。ここで、次式の条件が満たされるとすると、上式は簡単になる。なお、この条件は、実はローレンス条件である。

$$\partial_m A^m = 0$$

簡単になったポテンシャルの式は次のようになる。

$$\partial_m \partial^m A^n = -\mu_0 J^n$$

 $\partial_{\mu}\partial^{\mu} = \partial^{2}/\partial x^{2} + \partial^{2}/\partial y^{2} + \partial^{2}/\partial z^{2} - \partial^{2}/\partial (ct)^{2}$ であるから,この式は,まさに,ポテンシャ ルの波動方程式 (wave equation of potentials) を相対論的に記述したものである。ここにい たって,ベクトルポテンシャルとスカラーポテンシャルは独立した概念ではなく,統合された 概念になっていることが理解できよう。一方,式 (10.10) に代入すると,これは自動的に満た される。このように,相対論の世界では,場の式よりも,ポテンシャルのほうがより簡明な変 換を受ける。前述のように,ポテンシャルのほうがより根源的な場である印象を受ける。実 際,電磁場の変換関係を覚えるよりは,ポテンシャルの変換を行い,それから電磁場を誘導す ることを薦める。

また, $(A^n) = (\mathbf{A}, \phi/c)$ および $(J^n) = (\mathbf{J}, c\rho)$ は四元ベクトルを構成し,それぞれ**四元ポテンシャル** (four-vector potentail) , **四元電流** (four-vector current) と呼ばれる。座標と同じ変換を受けることも注目してほしい。例えば, S' 系に電荷分布 ρ' のみがあり,それを S 系で見ると、 $\rho = \gamma \rho'$ と大きく見えることになる。なお、これはあくまでも、電荷分布についての記述であり、総電荷量 q については、相対的に移動している系の長さが $\sqrt{1 - \beta^2} = 1/\gamma$ に短縮して見えるため、不変量となるので、注意してほしい。

10.5 一定速度で移動する電荷の作る電磁場

S'系で静止した点電荷の作る電場を,それと相対的に V の速度で動いている S 系で観測すると,電場および磁場が観測できるが,それらは次のようにして誘導できる。まず, S'系では,電荷は静止しているので,スカラーポテンシャルだけが存在し,次のようになる。

$$\frac{\phi(x',y',z',t')}{c} = \frac{\mu_0 cQ}{4\pi} \frac{1}{\sqrt{x'^2 + y'^2 + z'^2}}$$

これを S 系で見ると、スカラーポテンシャルも変換を受けるが、新たに速度と同じ方向のベ クトルポテンシャルも現れてくる。この場合は A_x のみが現れ、 $A_y = 0$ 、 $A_z = 0$ である。 10.6 リエナール・ウィーヘルトポテンシャル

$$\begin{aligned} \frac{\phi(x,y,z,t)}{c} &= \frac{\mu_0 cQ}{4\pi} \frac{\gamma}{\sqrt{x'^2 + y'^2 + z'^2}} = \frac{\mu_0 cQ}{4\pi} \frac{\gamma}{\sqrt{\gamma^2 (x - Vt)^2 + y^2 + z^2}} \\ A_x(x,y,z,t) &= \frac{\mu_0 cQ}{4\pi} \frac{(V/c)\gamma}{\sqrt{x'^2 + y'^2 + z'^2}} = \frac{\mu_0 cQ}{4\pi} \frac{(V/c)\gamma}{\sqrt{\gamma^2 (x - Vt)^2 + y^2 + z^2}} \end{aligned}$$

この結果, A_x は ϕ に比例していることが分かる。

$$\boldsymbol{A}(x,y,z,t) = rac{\boldsymbol{V}}{c} rac{\phi(x,y,z,t)}{c}$$

電場、磁場はこれらポテンシャルから計算するのがよい。

$$\frac{\boldsymbol{E}}{c} = -\nabla \frac{\phi}{c} - \frac{\partial}{c\partial t} \boldsymbol{A} = \frac{\mu_0 c Q \gamma}{4\pi} \frac{(x - Vt, \ y, \ z)}{\sqrt{\gamma^2 (x - Vt)^2 + y^2 + z^2}^3}$$
(10.11)

$$\boldsymbol{B} = \operatorname{rot} \boldsymbol{A} = \frac{\mu_0 c Q \gamma(V/c)}{4\pi} \frac{(0, -z, y)}{\sqrt{\gamma^2 (x - Vt)^2 + y^2 + z^2}^3}$$
(10.12)

この B は次のようにしても計算できる。ここで, $\partial A/\partial t$ の項は V との外積で消えることを利用している。

$$\boldsymbol{B} = \operatorname{rot} \boldsymbol{A} = \operatorname{rot} \left(\frac{\boldsymbol{V}}{c} \frac{\phi}{c} \right) = \operatorname{grad} \left(\frac{\phi}{c} \right) \times \frac{\boldsymbol{V}}{c} = \frac{\boldsymbol{V}}{c} \times \frac{\boldsymbol{E}}{c}$$

上式で示した電場は (Vt, 0, 0) を中心にして,放射状の形状をしている。つまり,電荷の 現在位置から放射状になっている。移動方向と垂直な方向の x = Vt における電場 E は静止 時の γ 倍と若干強くなっており,進行方向の電場 E_x は静止時の $1/\gamma^2$ と弱くなっている。つ まり,電気力線は x 方向に扁平となっている。また,計算は省略するが,この電場を閉曲面で 発散積分すると, Q/ε_0 となり,ガウスの定理が成立していることがわかる。なお磁場は x を 軸として回転的である。

10.6 リエナール・ウィーヘルトポテンシャル

任意の運動をしている電荷の作るポテンシャルを求めておこう。電荷 Q が t' のときに出した電磁場は、それから光速 c で伝わっていき、観測点では別の時刻 t に感じることになる。電荷 Q から見た観測点の位置ベクトルを $\mathbf{R}(t) = \mathbf{r} - \mathbf{r}'(t)$ とすると、

$$ct' + R(t') = ct$$
 (10.13)

が成立する。

まず,時刻 t' で粒子が静止して見えるような系を考えよう。すると,観測点 t で観測される ポテンシャルは次式で与えられる。

$$\frac{\phi}{c} = \frac{1}{4\pi\varepsilon_0 c} \frac{Q}{R(t')} = \frac{\mu_0 c}{4\pi} \frac{Q}{c(t-t')}$$
$$\boldsymbol{A} = 0$$

ここで第二の等号は式 (10.13) を利用している。次に *Q* が速度 *v* で動いているように見える 系へ変換してみよう。それには上式の φ を四元ベクトルとして記載するのがよい方法である。

$$A^{\nu} = \frac{\mu_0 c}{4\pi} \frac{Q v^{\nu}}{-\left(\sum_{\mu} R_{\mu} v^{\mu}\right)}$$

ただし, R_{μ} は, 四元ベクトル $(R^{\mu}) = (\mathbf{r} - \mathbf{r}', c(t - t'))$ を降階したものである。 これを \mathbf{A} と ϕ に分解して記載すると,次式が得られる。

$$\frac{\phi}{c} = \frac{\mu_0}{4\pi} \frac{Qc}{R - \boldsymbol{v} \cdot \boldsymbol{R}/c}$$
$$\boldsymbol{A} = \frac{\mu_0}{4\pi} \frac{Q\boldsymbol{v}}{R - \boldsymbol{v} \cdot \boldsymbol{R}/c}$$

これを**リエナール・ウィーヘルトポテンシャル**(Lienard-Wiechert potential)といい,任意 の軌跡を描いて運動している電荷の作るポテンシャルである。

この例に見られるように,相対論ではしばしば,古典的物理量を変更して,正しく座標変換 されるように調整することにより,四元ベクトルや四元テンソルを得ることが多いので,慣れ てほしい。

10.7 誘導起電力

第6章で述べた誘導起電力(induced electromotive force)とは、導体を磁場中で動かすと、 導体上に起電力が発生するという現象であるが、この現象は相対性原理を用いると簡単に理解 することができる。磁場があるところ、あるいはその周辺には、ベクトルポテンシャルがあ る。仮に磁場が時間変動がなく、ベクトルポテンシャルが時間変動していなくても、導体が空 間的に変動するベクトルポテンシャル中を移動すると、導体の感じるベクトルポテンシャルは 時間的に変動する。

今, (x, y, z, t)系で固定されたベクトルポテンシャルを考え,そこをx軸方向にV = vで 走っている導体を考えよう。この導体とともに動いている系の座標を(x', y', z', t')とする。 $x = \gamma(x' + vt'), y = y', z = z', t = \gamma(t' + vx')$ が成立する。走っている導体上では,A'も 時間変化し,さらに,S系では観測されなかった ϕ' も現れてくる。この結果E'が観測される ようになる。

$$\begin{split} E'_{x} &= -\frac{\partial \phi'}{\partial x'} - \frac{\partial A'_{x}}{\partial t'} = -\gamma \frac{\partial (\phi - vA_{x})}{\partial x'} - \gamma \frac{\partial (A_{x} - v\phi)}{\partial t'} = \gamma v \frac{\partial A_{x}}{\partial x'} - \gamma \frac{\partial A_{x}}{\partial t'} \\ &= \gamma v \frac{\partial A_{x}}{\partial x} \frac{\partial x}{\partial x'} + \gamma v \frac{\partial A_{x}}{\partial y} \frac{\partial y}{\partial x'} + \gamma v \frac{\partial A_{x}}{\partial z} \frac{\partial z}{\partial x'} \\ &- \gamma \frac{\partial A_{x}}{\partial x} \frac{\partial x}{\partial t'} - \gamma \frac{\partial A_{x}}{\partial y} \frac{\partial y}{\partial t'} - \gamma \frac{\partial A_{x}}{\partial z} \frac{\partial z}{\partial t'} - \gamma \frac{\partial A_{x}}{\partial t} \frac{\partial t}{\partial t'} \\ &= \gamma^{2} v \frac{\partial A_{x}}{\partial x} - \gamma^{2} v \frac{\partial A_{x}}{\partial x} = 0 \\ E'_{y} &= -\frac{\partial \phi'}{\partial y'} - \frac{\partial A'_{y}}{\partial t'} = -\gamma \frac{\partial (\phi - vA_{x})}{\partial y'} - \frac{\partial A_{y}}{\partial t'} = \gamma v \frac{\partial A_{x}}{\partial y'} - \frac{\partial A_{y}}{\partial t'} \\ &= \gamma v \frac{\partial A_{x}}{\partial x} \frac{\partial x}{\partial y'} + \gamma v \frac{\partial A_{x}}{\partial y} \frac{\partial y}{\partial y'} + \gamma v \frac{\partial A_{x}}{\partial z} \frac{\partial z}{\partial y'} \\ &- \frac{\partial A_{y}}{\partial x} \frac{\partial x}{\partial t'} - \frac{\partial A_{y}}{\partial y} \frac{\partial y}{\partial t'} - \frac{\partial A_{y}}{\partial z} \frac{\partial z}{\partial t'} - \frac{\partial A_{y}}{\partial t} \frac{\partial t}{\partial t'} \\ &= \gamma v \frac{\partial A_{x}}{\partial y} - \gamma v \frac{\partial A_{y}}{\partial x} = -\gamma v B_{z} \end{split}$$

同様にして, $E'_z = \gamma v B_y$ が導かれ, $E' = \gamma v \times B$ が示される。非相対論的速度の場合には $\gamma = 1$ と見なせるので, 誘導起電力の式と一致する。

10.8 物質のある場合の相対論

物質がある場合,式 (10.9)の右辺の全電流(および全電荷) J^n は自由電流(および自 由電荷) J_f^i と束縛電流(および束縛電荷) J_b^i から構成される。第4章より、束縛電流は rot $M + \partial P/\partial t$,束縛電荷は – div P で与えられる。 J_f^i も J_b^i も四元ベクトルであるが、特 に束縛電流は M や P といった他の量から導かれるものであるので、束縛四元電流は四元テ ンソルの微分で与えられる可能性が高い。

 $\operatorname{div}(\varepsilon_0 \boldsymbol{E} + \boldsymbol{P}) = \rho_f$ (式 (4.2)), $\operatorname{rot}(\boldsymbol{B}/\mu_0 - \boldsymbol{M}) - \partial(\varepsilon_0 \boldsymbol{E} + \boldsymbol{P})/\partial t = \boldsymbol{J}_f$ (式 (4.4))から類推できるように, このテンソルは電磁テンソルと形が似ているはずである。結論を記載 すると, まず磁化テンソル (magnetization tensor)を式 (10.7) に似せて, 以下のように定義 する。

$$(M^{ij}) = \begin{pmatrix} 0 & M_z & -M_y & cP_x \\ -M_z & 0 & M_x & cP_y \\ M_y & -M_x & 0 & cP_z \\ -cP_x & -cP_y & -cP_z & 0 \end{pmatrix}$$

ここで、各成分中、 B_n には M_n が対応しているが、 E_n/c には $-cP_n$ が対応している点に注意してほしい。この磁化テンソルを用いると、 $J_b^n = \partial_m M^{nm}$ となり、次式が誘導される。

$$\partial_m (B^{nm} - \mu_0 M^{nm}) = \mu_0 J_f^n$$

なお,本質的な変形ではないが,

$$H^{nm} = \frac{B^{nm}}{\mu_0} - M^{nm}$$

により、**副電磁テンソル**(sub-electromagnetic tensor)を定義すると、

$$\partial_m H^{nm} = J_f^{\ m}$$

とさらに簡単に表現できる。いずれにせよ, rot E 式と div B 式は物質の影響を受けないの で、式 (10.10) はそのまま成立する。

本節でいくつかの四元ベクトルやテンソルを紹介したが,これらはいずれも相対論的座標変 換を受ける。例えば,磁化テンソルも電磁テンソルと同じ変換を受ける。したがって,相対的 に移動している座標では,次のように変換される。

$$\begin{split} \boldsymbol{M}'_{\parallel} = \boldsymbol{M}_{\parallel} \\ \boldsymbol{M}'_{\perp} = \gamma \left(\boldsymbol{M} + \frac{\boldsymbol{v}}{c} \times c \boldsymbol{P} \right)_{\perp} \\ c \boldsymbol{P}'_{\parallel} = c \boldsymbol{P}_{\parallel} \\ c \boldsymbol{P}'_{\perp} = \gamma \left(c \boldsymbol{P} - \frac{\boldsymbol{v}}{c} \times \boldsymbol{M} \right)_{\perp} \end{split}$$

ここで、分極 Pを動く系から観測してみよう。M = 0と置くと、P'は若干変化するが、 新たに $M' = \gamma(v \times P)_{\perp} = \gamma v \times P_{\perp}$ なる磁化が生じることがわかる。分極により生じた正 負の電荷が -vの方向へ移動するので、結果的に電流が流れ、磁化となるのである。

次に磁化 M を動く系から観測してみよう。P = 0 と置くと、M' は若干変化するが、新た に $P' = -\gamma (v \times M/c^2)_{\perp} = -\gamma v \times M_{\perp}/c^2$ なる分極が生じることがわかる。つまり、磁石 を動かすと分極が発生することになり、結果として電場が発生することが導かれる。ちょっと 意外な結論である。これについては、11.4 節で、改めてその本質について述べる。

10.9 マクスウェル応力,ポインティングベクトル,電磁エネ ルギー

第7章に示した電磁場の持つ運動量やエネルギーの概念も,相対論では統一して論じること ができる。分布した電荷や電流に働く力 *f* は,ローレンツ力を拡張した次式で与えられる。

$$\boldsymbol{f} = \rho \boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B}$$

7.5 節では,この式より電磁場の運動量を導出することができた。また,ローレンツ力の式と *v*の内積を作ると,次式になる。 $f \cdot v = J \cdot E$

7.6 節では,この式より電磁場のエネルギーを導出することができた。 これら二つの式を γ_v 倍すると,四元ベクトルでまとめることができる。

$$f^n = B^n_h J^l$$

この右辺の J^l を,式 (10.9) を利用して場で置き換える。

$$f^n = \frac{1}{\mu_0} B^n_l \partial_m B^{lm}$$

すると、この式の右辺は次式のように変形できる。

$$f^n = \partial_m T^{nm} \tag{10.14}$$

ただし, *T^{nm}* は次式で定義される。

$$T^{nm} = \frac{1}{\mu_0} \left(B_l^n B^{lm} - \frac{1}{4} g^{nm} B^{ij} B_{ji} \right)$$
(10.15)

その証明は以下のようである。

$$\partial_m(\mu_0 T^{nm}) = B_l^n \partial_m B^{lm} + B^{lm} \partial_m B_l^n - \frac{1}{4} g^{nm} (B^{ij} \partial_m B_{ji} + B_{ji} \partial_m B^{ij}) \quad (10.16)$$

まず式 (10.16) の第一項は $\mu_0 f^n$ であり、第二項は次のように変形できる。

$$B^{lm}\partial_m B^n_l = g^{nk} B^{lm} \partial_m B_{kl} = \frac{1}{2} g^{nk} (B^{lm} \partial_m B_{kl} + B^{lm} \partial_m B_{kl})$$
$$= -\frac{1}{2} g^{nk} (B^{ij} \partial_i B_{kj} + B^{ij} \partial_j B_{ik})$$

ここで、この式の二つ目の等号であるが、第一項については $B^{lm} \to -B^{ml}$ とし、 $m \to i$ 、 $l \to j$ と置き直している。また、第二項については $l \to i$ 、 $m \to j$ と置き直し、さらに $B_{ki} \to -B_{ik}$ としている。また式 (10.16) の第三項は、次式のように変形できる。

$$-\frac{1}{4}g^{nm}(B^{ij}\partial_m B_{ji} + B_{ji}\partial_m B^{ij}) = -\frac{1}{4}g^{nk}(B^{ij}\partial_k B_{ji} + B_{ji}\partial_k B^{ij})$$
$$= -\frac{1}{2}g^{nk}B^{ij}\partial_k B_{ji}$$

ここで,まず最初の等号で, $m \to k$ と置き換える。二番目の等号では,第一項のほうは B_{ij} の昇階と B^{ji} の降階を同時に行うことで,gが残らないようにしている。第二項のほう はiとjを入れ替えている。この結果,両項は一致し,1/4は1/2となる。したがって,式 (10.16) は

$$\partial_m T^{nm} = f^n - \frac{1}{2}g^{nk}B^{ij}(\partial_i B_{kj} + \partial_j B_{ik} + \partial_k B_{ji}) = f^n$$

ここで,最後の括弧内は式 (10.10) であることを利用して 0 にしている。これで証明は終り である。

式 (10.15) の Bⁿ_k を昇階すると,次式が得られる。

$$T^{nm} = \frac{1}{\mu_0} \left(B^{nk} g_{kl} B^{lm} - \frac{1}{4} g^{nm} B^{ij} B_{ji} \right)$$

T^{nm} は四元の応力テンソルと呼ばれる。ここで, *B* の各成分を与えて, *T* の成分を書き出してみよう。

$$(T^{nm}) = \begin{pmatrix} T_{xx} & T_{xy} & T_{xz} & -cg_x \\ T_{yx} & T_{yy} & T_{yz} & -cg_y \\ T_{zx} & T_{zy} & T_{zz} & -cg_z \\ -S_x/c & -S_y/c & -S_z/c & -(u_e + u_m) \end{pmatrix}$$

各成分は B_i と E_i の積和で与えられるが、それらは、7.5 節で示した応力テンソル T_{ij} の各成 分および電磁場の運動量 g_i 、7.6 節で示したポインティングベクトルの各成分 S_i 、および電場 エネルギー u_e と磁場エネルギー u_m の和と一致するため、これらを使って記載した。

なお, T^{nm} は対称テンソルであり, $S_i/c = cg_i$ である。これは, 式 (7.19) に示した $S = c^2 g$ と同じ関係である。さらに, 式 (10.14) は, 式 (7.12) および式 (7.16) と完全に一致すること が示される。これにより, 電磁気的運動量と電磁気的エネルギーの両概念が統合されたことが 理解できよう。

実は,運動量とエネルギーについては,電場磁場で議論を行い,ポテンシャルの出る場がな かった。ポテンシャルの方がより本質的な場であることを説明してきた経緯を考えると,誠に 残念である。ぜひ,読者自身も考えてみてほしい。

第11章

パラドックス

電磁気学には数多くのパラドックスが提示されている。パラドックスは,提示者自身が答え を知っていて,世の中に挑戦的に提示する場合もあるが,多くの場合,提示者自身が本当に答 えが見つからず悩んだ結果であるため,一般に簡単には答えが出せないものが多い。

こうした困難さをバックに、これらを利用して、電磁気学は間違っているのではないかとい う記述すらある。著者は電磁気学は、極端にミクロやマクロなサイズにならない限り正しいと 信じているため、可能な限り、解答を出してみたいと思っており、あえて、おまけのおまけと もいうべき章を設けた。なお、パラドックスといっても、著名なかなり難しいものもあれば、 かなり自明に近いものもある。ここでは、本書の解説を読めば自明なものも、あえて掲載して いる。

いずれにせよ,パラドックスの答えを出すことは,大変によいトレーニングになるため,答 えを安易に示すのは教育上好ましくないため,本章ではまず問題を提示し,最後の節でヒント のみを提示し,解答は付録に示した。可能な限り,ぜひ,自力で努力してもらいたい。

なお,この章では検電荷と場を作る電荷の差がはっきりできないものが多く,これら二つの 表示は区別していない。

11.1 平行平板キャパシタに挿入された誘電体に働く力

図 11.1 に示すように、平行平板キャパシタに側方から中途まで入れられた誘電体に働く力 の計算は、仮想変位による静電エネルギーの変化から算出される。極板には Q なる一定の電荷 が溜っており、極板の横から見た長さを L とする。極板間に、横から x まで誘電体が埋め尽し ていたとする。このとき、キャパシタの容量は、 $C = [\varepsilon x + \varepsilon_0(L - x)] W/d$ である。ただし、 極板の奥行を W、間隔を d とした。したがってこのキャパシタに蓄えられている静電エネル ギーは $U = Q^2/2C = Q^2 d/2W [\varepsilon x + \varepsilon_0(L - x)]$ である。これより、誘電体は F = -dU/dxなる力で、キャパシタ内に引き込まれるという結果が得られる。

図 11.1 平行平板キャパシタに挿入された誘電体は極板間に引き込まれる。

さて問題は,このとき,各点のクーロン力を求めてみると,いずれでも電場は極板に垂直で あり横に引き込む成分を持っていない。横向きの成分を持っていないのに,何故誘電体は横向 きの力を感じるのであろうか。

問題を簡単にするために, $\varepsilon \to \infty$ とすると,誘電体中には電場がほとんどなくなるため, 誘電体を表面を薄く絶縁された金属に置き換えることができるので,それで考えよ。

11.2 磁場の中心

例えば、一様な磁場がある。この磁場が時間的に変化するとしよう。そうすると、ファラ デーの電磁誘導の法則にしたがって、任意の閉曲線上の電場の線積分は、それに鎖交する磁束 の時間微分となり、0ではなくなる。つまり、少なくともどこかには電場が発生していること になる。この電場の方向はどちらを向くのであろうか。磁場はいたるところ一様であるので、 一見、その方向を決定するのは不可能のように思われる。

11.3 強力な磁場中で動くモータの回転子に巻かれたコイルに働 く力

モータの回転子(rotor)は通常磁石を用いずに、高透磁率を持つ常磁性体にコイルを巻い た何らかの電磁石(eletromagnet)を用いる。直流モータでは、回転子に通常磁石を用いると 固定子(stator)の磁石と引き合った位置で止ってしまう。このため、整流子(commutator) を用い、回転子の位置により電磁石の極を N や S に切換えて、電磁石に常に一定方向の力が 加わるようにして回転を持続する。交流モータでは、種類により回転子の役割は変るが、いず れにせよ電磁石を回すことになる。さて、電磁石はコイルに電流を流す。このコイルにかかる 力は結果としてモータの回転力になるはずなので、非常に大きな力が加わるはずであり、しっ かりした構造を作成せねばならない事になり、コイルと巻き付けている磁性体との間の絶縁体

図 11.2 静止磁場中を動く導体と、静止導体に対し磁場が動く場合。

には相当な強度が必要となるはずであるが、実際のモータを見るとかなり危ない作りをしてい るように見える。この考えで良いのであろうか。

11.4 動く磁石が発生する電場

図 11.2 (a) に示すように,平行磁極の間に磁場と垂直な方向を向く導線を入れ,それを磁 場および導線の方向に垂直な方向に動かすと,フレミングの右手の法則にしたがって両端には 電位差が発生する。

あるいは,次のように説明してもよい。導体中の電荷にはローレンツ力が働き,その力によ り電荷は導体端のほうに動かされるが,その結果,端の付近に電荷が蓄積され,新たな電場が 形成される。電荷の移動が止まるのはこの電場と,もともとの磁場の作るローレンツ力が0と なるときである。つまり,**v** × **B** の線積分だけの電位差が発生する。

さて,視点を変えて,同図(b)のように,導体のほうを固定し,磁石のほうを動かしてみよ う。まず,導体は止まっているから,ローレンツ力は働かない。磁石の端が近付かない限り, 磁場は一定であるので,電磁誘導の法則による電場も発生せず,導体上には電位差は発生しな いことになる。

11.5 平行移動2電荷間に働く力

y軸方向に距離 a 離れて置かれた二つの静止電荷がある。この間にはクーロン力 $Q_1Q_2/4\pi\epsilon_0 a^2$ の斥力が働いている。この2電荷をその間隙と垂直な x軸方向に速度 v で動か す。すると、電荷の移動により磁場が発生し、その磁場による力は二つの電荷を近寄らせるよ うに働くため、見掛けのクーロン力が下ったようになる。同じ力が静止時と移動時で異なるの は矛盾である。

図 11.3 (a) 電荷が動いて見える S 系と, (b) 止まって見える S' 系では, 電荷の受ける 力が異なるのか。

11.6 磁場力の消失

ファインマン (Feynman) 物理学の書*1にあるパラドックスであるが, 図 11.3 に示すよう に,電流と平行な方向に移動している電荷には,移動方向と垂直な力が働く。この系を S 系と しよう。さて,この電荷と一緒に動く系を S' 系としよう。S' 系で見ると,電荷は止まって見 えるため,磁場の効果は消失する。つまり,力は消失し,S 系で得た力と矛盾する。

11.7 ファインマンの作用反作用のパラドックス

これもファインマン物理学にあるパラドックスであるが,図 11.4 に示すような二個の直交 運動する電荷を考える。*x*方向に直線運動をしている電荷#1の正面に,ちょうど別の電荷#2 がきた瞬間を考える。電荷#2 は,電荷#1の運動方向と直角の*y*方向に動いている。両電荷 に働く力を求めると,電場による力には作用反作用に法則が成立する。一方,#1 には#2 の 作る磁場による力が働くのに対し,#2 にはこうした力は働かず,作用反作用の法則が成立し なくなるが,何故か。

図 11.4 二つの移動電荷に働く力には,作用反作用の法則が成立しない。 左: 点電荷,右: 面電荷

^{*&}lt;sup>1</sup> R. P. Feynman, R. B. Leighton & M. Sands, "The Feynman Lectures on Physics", Addison Wesley, 1965. 岩波書店より和訳「ファインマン物理学」がある。

図 11.5 磁場を弱めていくと、二つの球に与えられる角運動量の総和が0 でなくなる。

これをもう少し定量的に分析できる形としよう。二点電荷を yz 面に拡がる二枚の電荷シートに置き換えてみても、同様な問題が発生するが、何故か。

11.8 ファインマンの角運動量のパラドックス

これもファインマン物理学の書にあるパラドックスであるが,円板があり,中心を同じくす る円状に点電荷が並べられているとする。また,その円板上に有限長ソレノイドコイルが載っ ている。最初にコイルに電流を流して,磁場を作っておく。円板をコマのように自由に回転で きるようにしておいて,このコイルの電流を切ると,環状の電場が発生し,点電荷がこの電場 によって動き始める。問題は,最初コイルの電流が流れているときには角運動量がなかったの が,電流を切ると,角運動量が発生することである。つまり,角運動量が保存されないように 見えるが,何故か。

これをもう少し定量的に分析できる形としよう。図 11.5 にあるように、同心の球形の導体 を考え、これらの側面に対向するように正負の電荷を蓄えておく。両導体は力学的には互いに ずれないように固定されているものとする。これらを囲むように、中心を通る軸を持つソレノ イドがあり、あらかじめ外部から一様磁場を与えておく。ある時点からその磁場を零に減じて いくと、電磁誘導により環状の電場が発生し、これら正負の電荷に力が働き、それぞれ回転 モーメントを作り出す。そのモーメントの総和は0とはならないので、角運動量が与えられる ことになるが、何故か。

11.9 パフ・パフの角運動量のパラドックス

前小節のファインマンのパラドックスでは,磁場が変化しているが,電場が変化するモデル も可能である。パフ・パフ(Pugh-Pugh)らが提案したもので,図 11.6 に示すように,前者 と同じ構造であるが,今度は磁場は一定であり,蓄積されている電荷のほうが0からQまで 一定の速さで変化する。このとき,電荷は内殻の北極のほうから注入されるとする。これに対 向して,外殻のほうには逆向きの電流が流れる。このとき,内殻の表面に流れる電流にはロー

図 11.6 一定磁場のもとで,二つの球に与えられている電荷を変化させると,角運動量の総和が0 でなくなる。

レンツ力が働く。この力の合計は内殻を回転させる方向に角運動量を与えるようなトルクを発 生する。一方,外殻に働くトルクを計算すると,これら二つには差があり,結局,二つの球に 与えられる角運動量の和は0とはならない。つまり,この差の分,角運動量は保存されないよ うに見えるが,何故か。

なお,もともとのパフ・パフの提案は,外に置かれたソレノイドの代わりに,内殻の内部一 杯に一様に磁化した磁石を置き,それの作る磁場を変化させている。このほうが,すべての要 素が外殻の内側に存在するため,考えやすいが,球体の作る磁場の値を知らないと,計算でき ない。球体の作る磁場の値は,色々な著書に出ているため,ぜひ,トライしてほしいが,いず れにしても本質的な差はない。

11.10 トロートン・ノーブルのトルクのパラドックス

トロートン・ノーブル (Trouton-Noble) らが提案したパラドックスで, z 軸に対し, 45° に 置かれた電気モーメントがある。両端の電荷の間には電気モーメントの軸に平行な引力が働い ている。

図 11.7 静止している斜めの関係にある二つの電荷の間には斥力しか働かないが,これら が動いて見える系で見ると,移動方向垂直の力が発生する。

図 11.7 に示すように、この電気モーメントを z 軸方向に –v の速度で動いている系から観 測すると、電荷が作る電場による力は電気モーメントの軸方向の引力となるが、それ以外に電
荷が移動するために発生する磁場がある。この磁場の作る力は z 軸と直角になり,結果として 電気モーメントを回すトルクを構成する。

どちらの系における議論が正しいのであろうか。

11.11 霜田の磁石と運動電荷の作用反作用のパラドックス

図 11.8 に示すように,直線運動をしている電荷の正面に,円板状の磁石板が,軸を電荷の 運動方向と垂直となるように置かれている。磁石が電荷の作る磁場から受ける力を求めると, 磁気モーメントは磁場の多い方向へ引き込まれるから,磁石全体では相殺して0となる。一 方,電荷は,磁石の作る磁場を感じるので,横向きの力を感じる。この結果,作用反作用の法 則が成立しなくなる。

次に電荷とともに動く系から見ると、磁石は電場の影響は受けないので、力は受けない。一 方、静止電荷も磁場の影響は受けないので、力を受けない。この場合は作用反作用の法則は成 立するが、磁石の静止して見える系での結果とまったく一致しない。

図 11.8 円板状磁石に向かって移動する電荷。

11.12 テレゲンの磁化に働く力のパラドックス

テレゲン^{*2}が指摘したパラドックスであり、磁石のモデルとして、古くは磁荷分極、現在は 磁化電流のモデルがあるが、これらを rot $B \neq 0$ の存在する磁場中に入れると、図 11.9 に示 すように、力の働く方向が逆転する。なお、rot $B \neq 0$ の磁場とは、変動する E によるものと しよう。

これについて本書では, (7.1)節で述べたように,磁化電流のモデルが正しいとしたが,その場合,力の反作用はどうなっているのか。

 $^{^{\}ast 2}$ B. D. H. Tellegen, "Magnetic Dipole Model", Am. J. Phys., Vol. 30, pp. 650-652, 1962

図 11.9 回転のある磁場中に置かれた上向きの磁化にかかる力。左: 棒磁石のように描い た磁荷分極モデル,右: 輪状のコイルのように描いた磁化電流モデル

11.13 ヒント

まず,ここに示したパラドックスはいずれもパラドックスではなく,本書に示した範囲で理 解可能であることを述べておこう。

ヒントを読む前に,もう一度,自分で考えてみよう。パラドックスは自分の理解の程度を チェックするのに,きわめてよい手段であるからである。

11.13.1 平行平板キャパシタに挿入された誘電体に働く力

電極と誘電体の間に僅かな隙間を入れて、電場がどうなるかを考察してみよう。特に $\varepsilon \to \infty$ の場合は誘電体を金属に置き換えてもよいので、考察は比較的楽になる。

11.13.2 磁場の中心

ー様な磁場といっても,どこかにそれを作っている電流があるはずである。磁場が磁石に よって作られている場合でも,磁石中の電流を考えれば,同じことである。

11.13.3 動く磁石が発生する電場

この問題は,起電力の発生が,電磁誘導による場合と,導体が動く場合の二種類があること をきちんと理解していれば,何らパラドックスではない。磁石に固定した視点では,導体が動 く場合であり,逆に磁石を動かす場合には電磁誘導で考えればよい。この導線を含み,磁石の 外部を周回する空間に固定された閉曲線を考えると,そこに鎖交する磁束は磁石の移動につ れ,明らかに変化する。したがって,この閉曲線に沿って,電場が発生するのは明らかである。 ただ,導線のところでは磁場が変化しないため,直感的には理解しずらい。

11.13.4 平行移動2電荷間に働く力

このパラドックスは,相対論を使わないと理解できない。移動電荷の作る電場はクーロンの 法則とはやや異なる。式 (10.11) などを参照。

11.13.5 磁場力の消失

このパラドックスも,相対論を使わないと理解できない。電流を構成している正負の分布電 荷がどう変換されるかをきちんと計算してみよう。

11.13.6 強力な磁場中で動くモータの回転子に巻かれたコイルに働く力

コイル内の電流に誘起される磁化電流を検討してみよう。

11.13.7 ファインマンの作用反作用のパラドックス

電磁気学では,電磁場が運動量(ポインティングベクトル/c²)を持ったり,エネルギーを 蓄積したりするので,そのことを考慮しなければならない。作用反作用の法則は,質点と電磁 場の間に成立し,一方,電磁場に働くすべての力の合力は,電磁場の運動量を増加させること になる。したがって,質点に働く力と電磁場の運動量の増加率の総和は0となれば,矛盾はな いことになる。

yz面に拡がる二枚の電荷シートの場合,#1の電荷の移動による磁場は,変位電流も含めて 全電流 $J_x + \varepsilon_0 \partial E_x / \partial t$ が至るところ0になることに注意されたい。実は#1の電荷 Qが $-\infty$ の空間から ∞ にまで移動する走行時間を τ とすると,全電流は Q/τ となるが,この値は限りなく小さくなる。

点電荷の場合,厳密なポインティングベクトルの計算は面倒なので,およそどこにポイン ティングベクトルが発生するかを調べてみよう。点電荷の場合も全電流は大局的にはほぼ0で ある。しかし,移動電荷のところに微小電流源を置いた場合のような局所的な全電流が流れ, この全電流はビオ・サバール型の磁場を発生する。

#1 の発生する電磁場を E_1 , B_1 , #2 の方を E_2 , B_2 とするとき, ポインティングベクト ルは ($E_1 \times B_1 + E_1 \times B_2 + E_2 \times B_1 + E_2 \times B_2$)/ μ_0 であるが, 第1項と第4項のような 自身の電場と磁場の積は,時間に依存せず一定なので無視してよい。第2項と第3項の交差項 のみ考慮の対象とせよ。

11.13.8 ファインマンの角運動量のパラドックス

一見,前の問題と同じようであるが,この場合には回転が入っている。この回転と一緒に動 く座標系を考えれば,作用反作用の法則が理解できそうであるが,特殊相対論でも回転の入っ た座標変換は,慣性系でなくなるため,示されていない。したがって,ポインティングベクト ルの作る角運動量を考えざるを得ない。

11.13.9 パフ・パフの角運動量のパラドックス

前問が解ければ,ほとんど同じ手法で計算できる。やはり,ポインティングベクトルの作る 角運動量を考えざるを得ない。

11.13.10 トロートン・ノーブルのトルクのパラドックス

斜め 45°の両端に置かれた正負の電荷が互いに及ぼす引力を,-vの速度で動いている S'系から見てみよう。この際,電磁力として意識せず,通常の力として四元力成分を求め,それを変換してみよう。その変換結果は電場と磁場の計算結果と一致し,トルクが働いているように見える。

つまり,この問題は,電磁力の特殊性に基づくものではなく,普通の力でも起こる相対性理 論上の現象なのである。

それでは何故,動いている系ではトルクが発生しているかに見えるのだろうか。トルクの有 無はどのような条件で議論せねばならないのかなどを考えてみよう。

11.13.11 **霜田の作用反作用のパラドックス**

いままでの他のパラドックスの解が理解できた人には,ほとんど問題のないパラドックスで ある。前半はポインティングベクトルで理解できる。後半は,誤った記述であり,電場が生じ ている。

11.13.12 テレゲンの磁化に働く力のパラドックス

現在の磁化電流モデルの正当性を検証しよう。磁化として考えるとちょっと面倒であるが, 束縛電流の代わりに自由電流のループに働く力を考えよう。さらに,力の反作用として,ポイ ンティングベクトルの方向を計算して,つじつまが合えば,磁化電流モデルの方が正しい。

付録 A

ー次元の電磁気学

yz 平面内では均質で, x 軸方向にだけ変化する電磁場は, 面積分が単なる差分になってしま うなど, きわめて直感的な理解が得られる。本来ならば, 本書の最初の方の章で示すべきであ ろうが, やはり, マクスウェルの方程式を提示してからの方が, 導入が簡単なことと, 理解が 高まると思い, ここで紹介する。

A.1 静電場

一次元の世界では、電荷は yz 面内で一様である。このため、単位電荷に代わるものとして、 きわめて薄い yz 面に拡がったシート状の面電荷を考える。これの作る電場は次式で与えら れる。

$$oldsymbol{E} = oldsymbol{i} rac{1}{2arepsilon_0} egin{cases} \sigma & x > 0 \ -\sigma & x < 0 \end{cases}$$

iは x 軸方向の単位ベクトル,また σ は面電荷密度である。

この式より,電荷の作る電場は,電荷の存在する場所では不連続となるが,その他のあらゆ る領域で一定となる。今,二枚の yz 平面で囲まれた領域を考えよう。この領域内に電荷が存 在しないと,電場はこの領域内で一定となるため,左右の平面で同じ値をとる。しかし,この 領域内に電荷が存在すると,上式より左右の平面における電場には差が生じてくる。この差は 次式で与えられる。

$$E_x(x_r) - E_x(x_l) = \frac{1}{\varepsilon_0}\sigma$$
$$E_y(x_r) - E_y(x_l) = 0$$
$$E_z(x_r) - E_z(x_l) = 0$$

あるいはベクトルを用いて格好よく書けば,

$$\boldsymbol{i} \cdot (\boldsymbol{E}(x_r) - \boldsymbol{E}(x_l)) = \frac{1}{\varepsilon_0} \sigma \tag{A.1}$$

$$\mathbf{i} \times (\mathbf{E}(x_r) - \mathbf{E}(x_l)) = 0 \tag{A.2}$$

この上式 (A.1) は、面電荷が複数ある場合には、次のように変形できる。

$$oldsymbol{i} \cdot (oldsymbol{E}(x_r) - oldsymbol{E}(x_l)) = rac{1}{arepsilon_0} \sum_i \sigma_i$$

右辺は、この領域内に存在するすべての電荷を加えた総電荷となる。さらに、面電荷が分布し て存在するときには、次式のようになる。

$$\boldsymbol{i} \cdot (\boldsymbol{E}(x_r) - \boldsymbol{E}(x_l)) = \frac{1}{\varepsilon_0} \int_l^r dx \,\rho \tag{A.3}$$

積分範囲の L はこの領域内を指す。いずれにせよ,領域両端の電場ベクトルの差は,領域内の 総電荷で決まるのである。

式 (A.3) は, xy 方向に dS の断面積を有する十分小さい柱状でも成立する。式 (A.3) の両 辺に dS を掛け, さらに dS を領域から外へ向うベクトルと定義すると, 右端では idS = dS, 左端では -idS = dS と書けるので, この式は次のように変形できる。

$$\sum_{i=l,r} d\boldsymbol{S}_i \cdot \boldsymbol{E}_i = \frac{1}{\varepsilon_0} \int_{\mathcal{V}} dS \, dx \rho$$

この式と三次元における式 (3.1) は,極めて相関性が高いことが分ろう。一次元の場合,div はベクトルの *x* 成分の差分になることを理解して欲しい。

同様に,式(A.2)も次のように変形することができる。

$$\sum_i d\boldsymbol{S}_i \times \boldsymbol{E}_i = 0$$

この式と三次元における式 (3.2) との相関性もよく理解できよう。一次元の場合, rot はベクトルの yz 成分の差分になることを理解して欲しい。

っまり,電磁気学を学ぶ上での最初の障壁である面積分は,一次元における領域両端におけ る差を一般化したものである。三次元になると,領域端が平面ではなくなり,一般的には閉曲 面になってしまうこと,また,そこでは電場 *E* が一定ではなく,色々変化するので複雑な表 現になるのである。

式 (A.3) を Δx の厚さの微小領域に適用してみよう。 $x_l = x, x_r = x + \Delta x$ とすると、この領域中の ρ をほぼ一定であるとして、次式が得られる。

$$\boldsymbol{i} \cdot (\boldsymbol{E}(x + \Delta x) - \boldsymbol{E}(x)) = \frac{1}{\varepsilon_0} \Delta x \, \rho$$

辺々を Δx で割って $\Delta x \rightarrow 0$ とすると,次式が得られる。

$$\boldsymbol{i} \cdot \frac{\partial \boldsymbol{E}}{\partial x} = \frac{\partial E_x}{\partial x} = \frac{\rho}{\varepsilon_0}$$

これが,三次元の場合のマクスウェルの div *E* 式に対応することは明かであろう。 同様に,式 (A.2) を狭い領域に適用すると,次式が得られる。

$$oldsymbol{i} imes rac{\partial oldsymbol{E}}{\partial x} = -oldsymbol{j} rac{\partial E_z}{\partial x} + oldsymbol{k} rac{\partial E_y}{\partial x} = 0$$

これが,三次元の場合のマクスウェルの rot **E** 式の静的な場合に対応することも明かであろう。

A.2 静磁場

直流電流は静磁場を作り出すが、これが x 軸方向に流れると、x 軸を囲むような磁場発生す るため yz 面方向に一様という仮定が崩れてしまう。このため、直流電流は yz 面内にしか流 れない。それも、 J_y も J_z も至るところ一定でなければならない。そこで基礎となる電流とし て、yz 面内に一定方向に流れる面電流を考え、これを K としよう。この面電流は、静磁場を 作り出す。静磁場は面電流を右ネジに回る方向に発生し、同じく平面的である。式で表すと次 のようになる。

$$\boldsymbol{B} = \frac{\mu_0}{2} \begin{cases} \boldsymbol{K} \times \boldsymbol{i} & x > 0 \\ -\boldsymbol{K} \times \boldsymbol{i} & x < 0 \end{cases}$$

さて,電荷の場合と同じように,二枚の yz 平面で囲まれた領域を考える。この領域内に電流が存在しないと,二枚の平面内は一定の磁場となるため,左右の磁場には差が生じない。しかし,領域内に電流が存在すると,左右の平面における磁場は異なってくる。その差は次式で与えられる。

$$i \cdot (\boldsymbol{B}(x_r) - \boldsymbol{B}(x_l)) = 0$$

$$i \times (\boldsymbol{B}(x_r) - \boldsymbol{B}(x_l)) = \mu_0 \boldsymbol{K}$$
(A.4)

式 (A.4) より, さらに yz 方向の電流が分布して流れている場合の式が誘導できる。

$$\boldsymbol{i} \times (\boldsymbol{B}(x_r) - \boldsymbol{B}(x_l)) = \mu_0 \int_l^r dx \boldsymbol{J}$$
(A.5)

これらの式も,三次元の場合の式 (3.5),および式 (3.6) などに対応することも明かであろう。 さらに,これらの式から微分形も得られる。

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} ellymbol{i} & \cdot rac{\partial m{B}}{\partial x} = rac{\partial B_x}{\partial x} = 0 \ ellowbol{i} & imes rac{\partial m{B}}{\partial x} = -eta rac{\partial B_z}{\partial x} + m{k} rac{\partial B_y}{\partial x} = \mu_0 m{J} \end{aligned}$$

これらの式も,三次元の場合のマクスウェルの div **B** 式,および rot **B** 式の静的な場合に対応 することも明かであろう。

A.3 動的な場

静的な場に対する方程式を,動的な場に対する方程式に補正するには,ファラデーの電磁誘 導の法則とマクスウェルの変位電流を含めればよい。その手法は,三次元の場合とまったく同 じである。

ファラデーの法則を入れると、式 (A.2) が次のように変形される。

$$\boldsymbol{i} \times (\boldsymbol{E}(x_r) - \boldsymbol{E}(x_l)) = -\frac{\partial \boldsymbol{B}}{\partial t}$$

同様に変位電流を含めると、式 (A.5) が次のように変形される。

$$\boldsymbol{i} \times (\boldsymbol{B}(x_r) - \boldsymbol{B}(x_l)) = \mu_0 \int_l^r dx \left(\boldsymbol{J} + \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \right)$$

さらに、これらの微分形を求めると、一次元の場合のマクスウェル方程式が得られる。

$$i \cdot \frac{\partial E}{\partial x} = \frac{\partial E_x}{\partial x} = \frac{\rho}{\varepsilon_0}$$

$$i \times \frac{\partial E}{\partial x} = -j \frac{\partial E_z}{\partial x} + k \frac{\partial E_y}{\partial x} = -\frac{\partial B}{\partial t}$$

$$i \cdot \frac{\partial B}{\partial x} = \frac{\partial B_x}{\partial x} = 0$$

$$i \times \frac{\partial B}{\partial x} = -j \frac{\partial B_z}{\partial x} + k \frac{\partial B_y}{\partial x} = \mu_0 J + \varepsilon_0 \mu_0 \frac{\partial E}{\partial t}$$

これの式を各成分にわけて、まとめ直してみよう。最初は E_x と B_x に関する式である。

$$\frac{\partial E_x}{\partial x} = \frac{1}{\varepsilon_0} \rho$$
$$B_x = \text{const}$$
$$0 = J_x + \varepsilon_0 \frac{\partial E_x}{\partial t}$$

 E_y と B_z はいつも独立した組になっている。

$$\begin{aligned} \frac{\partial E_y}{\partial x} &= -\frac{\partial B_z}{\partial t} \\ \frac{\partial B_z}{\partial x} &= -\mu_0 \left(J_y + \varepsilon_0 \frac{\partial E_y}{\partial t} \right) \end{aligned}$$

同様に, E_z と B_y はいつも独立した組になっている。

$$\begin{aligned} \frac{\partial E_z}{\partial x} &= \boldsymbol{j} \frac{\partial B_y}{\partial t} \\ \frac{\partial B_y}{\partial x} &= \mu_0 \left(J_z + \varepsilon_0 \frac{\partial E_z}{\partial t} \right) \end{aligned}$$

面積分という概念が一次元の差分の拡張であること,また,第11章でいくつかのパラドックスを示すが,こうした複雑な問題に対して定量的な考察を試みるには,一次元の世界が極めて便利であることから,あえて一次元の電磁気学を紹介した。

付録 B

超伝導体とポテンシャル

B.1 超伝導体

超伝導体(superconductor)では電子が物質の影響を受けて互いに引力を感じる結果,クー パー対(Cooper pair)と呼ばれる電子二つからなる準粒子(quasi particle)を構成する。こ の準粒子は 1/2 スピン粒子二個からなるため,偶スピン(多くの金属超伝導体ではスピン 0, 高温超伝導体ではスピン 1)のボーズ粒子(boson)として振舞う。特に,十分低温になると ボーズ凝集(Bose condensation)を起こし,全体で一つの量子力学的波動関数で記述される ような振舞いを行う。

つまり、次式にしたがう。

$$(E+q\phi)\psi = \frac{(\boldsymbol{p}+q\boldsymbol{A})^2}{2M}\psi$$
(B.1)

ここで, Eやpは次のような微分演算子である。

$$E = i\hbar \frac{\partial}{\partial t}$$
$$\boldsymbol{p} = -i\hbar \operatorname{grad}$$

さらに、材料中では材料を構成する格子の正電荷を中和するように電子が配置するため、電子 密度はほぼ一定 (n) となるため、 ψ の振幅は一定になる。このような場合には、 $\psi = |\psi| \exp(i\theta)$ と置くことにより、次式が成立する。

$$E\psi = -\hbar \frac{\partial \theta}{\partial t}\psi$$
$$p\psi = (\hbar \operatorname{grad} \theta)\psi$$

これより

$$(\boldsymbol{p} + e\boldsymbol{A})^2 \psi = (\boldsymbol{p} + e\boldsymbol{A})(\hbar \operatorname{grad} \theta + e\boldsymbol{A})\psi$$
$$= [-i\hbar^2 \nabla^2 \theta - i\hbar \operatorname{div} \boldsymbol{A} + e\boldsymbol{A}(\hbar \operatorname{grad} \theta + e\boldsymbol{A}) + (\hbar \operatorname{grad} \theta + e\boldsymbol{A})^2]\psi$$

つまり,式(B.1)は

導体の議論をする際,超伝導体を基本にすると理解が楽である。超伝導体の電流を運ぶ粒子 に対しては,次式が成立する。

$$p = 2mv - 2eA$$

 $E = T - 2e\phi$

ここで,超伝導粒子の質量を 2m,超伝導粒子の電荷を –2e とした。また,T は運動エネル ギー,E は全エネルギーである。一方,超伝導粒子は量子力学の電子のように位相を持つこと が知られている。この位相をθとすると,次の式が成立する。

$$p = \hbar \operatorname{grad} \theta$$
$$E = -\hbar \frac{\partial \theta}{\partial t}$$

ここで,位相 θ は,超伝導理論より次の微分方程式と境界条件を満たすことが分かっている。

$$\nabla^2 \theta - \frac{1}{c^2} \frac{\partial^2 \theta}{\partial t^2} = 0$$

 $\boldsymbol{n} \cdot \operatorname{grad} \theta = 0$ (at surface)

さて、nを超伝導粒子の密度とすると、次式が成立する。

$$\boldsymbol{J} = - 2 en \boldsymbol{v} \\ \rho = - 2 en \frac{T}{2mc^2}$$

これら式から、次の関係が得られる。

$$\boldsymbol{J} = \frac{2e^2n}{m} \left(-\Phi_0 \operatorname{grad} \theta - \boldsymbol{A} \right)$$
(B.2)

$$\rho = \frac{2e^2n}{mc^2} \left(\Phi_0 \frac{\partial\theta}{\partial t} - \phi \right) \tag{B.3}$$

ここで、 Φ_0 は**磁束量子** (flux quantum) と呼ばれる物理量で、次式で定義される。

$$\Phi_0 = \frac{\hbar}{2e}$$

これらの式を電流連続の法則(current continuity law)の式へ代入すると、ポテンシャル がローレンスゲージ(Lorenz gauge)であることが直ちに導かれる。したがって、電磁場を解 くには、まず θ を解き、さらにこれらの二式とポテンシャルの波動方程式(wave equation of potentials)を連立させることになる。上式をポテンシャルの波動方程式へ代入してみよう。

$$\left(\nabla^2 + \frac{1}{\lambda^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{A} = -\frac{\Phi_0}{\lambda^2} \operatorname{grad} \theta$$
(B.4)

$$\left(\nabla^2 + \frac{1}{\lambda^2} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\phi = \frac{\Phi_0}{\lambda^2}\frac{\partial\theta}{\partial t}$$
(B.5)

ここで λ は、次式で示される磁気侵入長(magnetic penetration depth)と呼ばれる長さで ある。

$$\lambda = \sqrt{\frac{m}{2\mu_0 e^2 n}}$$

 $\lambda \to \infty$ とすると,自由空間の式になるので,超伝導の効果を簡単にチェックすることがで きる。実際の超伝導体では 1 μ m 程度以下のきわめて小さな値である。 λ が有限のとき,上式 の左辺は減衰型の波動方程式と呼ばれるもので,各ポテンシャルが,超伝導体の表面から λ の 特性長で指数関数的に侵入する解を持つことを示す。もちろん,これらの方程式は超伝導体の 内部だけで成立する。外部では,もともとのポテンシャルの波動方程式の右辺を0とした方程 式が成立する。

それでは、実際に解いてみよう。

外部磁場中の円柱

ドーナツ的な円帯の保つ磁場

式 (B.2) と (B.3) をローレンスゲージのポテンシャルの基本式 (B.4) と (B.5) へ代入してみ ると, 直ちに次式が得られる。

$$\nabla^2 \rho - \frac{1}{c^2} \frac{\partial^2 \rho}{\partial t^2} = \frac{\rho}{\lambda^2}$$
$$\nabla^2 \boldsymbol{J} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{J}}{\partial t^2} = \frac{\boldsymbol{J}}{\lambda^2}$$

電位が異なる場合

次に ϕ とAを考えよう。これらは ρ とJおよび θ から求めることができる。 θ はゲージであるから,適当に選ぶことができるので、いたるところ $\theta = 0$ であるとすると、 ϕ とAは ρ とJに比例するから、超伝導体中では、やはり表面から λ 程度の深さまで指数関数的に減衰して

いく。このとき、表面でのポテンシャルの値はポテンシャルの深さ方向の勾配の λ 倍となる。 空間側でのポテンシャルは超伝導体中のポテンシャルと、値も勾配も連続となることから、超 伝導体表面付近では同様の性質が成立する。超伝導体の λ は 1 μ m 以下のきわめて小さな値で あることから、 $\lambda \rightarrow 0$ とすると、超伝導体表面ではポテンシャルの勾配は存在しても、ポテン シャルの値そのものはほとんど 0 であることが導かれる。

B.2 ジョセフソン接合

B.3 超伝導インダクタンス

超伝導体のインダクタンスを計算する前に,通常のインダクタンス(inductance)を計算し てみよう。これには電流の作る磁界を計算するのが普通である。磁界はベクトルポテンシャル から計算できるので,実は次の式の第二項を基本としているといえる。

$\boldsymbol{p} = M\boldsymbol{v} + q\boldsymbol{A}$

この式は一般化運動量と呼ばれる概念の定義である。粒子の全エネルギーは $U = Mv^2/2 + qV$ で表されるが、速度に基づく運動エネルギー(相対論では Mcv_t と書かれる)とポテンシャルエネルギーの和で与えられる。同様に、粒子の全運動量は、速度に基づく力学的エネルギーとベクトルポテンシャルの和で与えられる。

多くの材料では上式の第一項は無視できるため, p = qA と表される。一方, F = dp/dt であ り, また $F = -q \operatorname{grad} V$ であるので, $\operatorname{grad} V = -\partial A/\partial t$ が成立する。ここで, $F = -q \operatorname{grad} V$ であって, F = qE ではないことに注意してほしい。そこで,ある回路の枝が導体でできてい るときには,その枝の両端の電位差はこの左辺を枝に沿って経路積分することで計算すること ができる。このとき右辺も積分されるので,次式が成立する。

$$\Delta V = -\frac{\partial}{\partial t} \int d\boldsymbol{r} \cdot \boldsymbol{A}$$

ΔV は線積分の終点と始点の電位差を示す。負号は,電流の流れる方向に電位が上がっていく という定義をしたからである。

回路理論では電流の流れに逆らって電位が上がると定義しているので,回路理論の電位を用いると,次式 (B.6) のようになる。以後,電位の定義は回路理論に準ずるとしよう。らに,右辺のベクトルポテンシャルは,自分自身の電流や他の枝の電流により構成されるので,

$$\Delta V = \frac{\partial}{\partial t} \int d\boldsymbol{r} \cdot \boldsymbol{A} = \sum_{i} L_{i} \frac{dI_{i}}{dt}$$
(B.6)

のような形となる。 L_i は比例係数である。このうち、自分の電流による寄与分が自己インダクタンス(self-inductance)である。また、他の電流の寄与分が相互インダクタンス (mutual-inductance) である。

なお,有限の長さの配線が作るベクトルポテンシャルは次式で与えられる。これが磁気イン ダクタンス(magnetic-inductance)としてよく知られている概念である。

$$\boldsymbol{A} = \frac{\mu_0 \boldsymbol{J} dv}{4\pi r}$$

さて,超伝導体では単位面積当たりの電流密度を大きくすることができる。つまり,第一項 の寄与が無視できなくなる場合も少なくない。特に,超伝導エレクトロニクスで,配線の断面 積が小さい場合には第一項の影響が大となる。第一項だけがある場合の解析を示しておこう。 この場合,第一項は電流密度に置き換えることができる。

$$\boldsymbol{p} = \frac{M\boldsymbol{J}}{nq}$$

磁気インダクタンスの場合と同様に両辺を時間微分すると,左辺は回路理論の電位を用いて, q grad V となるから,次のように置き換えられる。

$$\operatorname{grad} V = \frac{M}{nq^2} \frac{d\boldsymbol{J}}{dt}$$

つまり,単位体積当たり *M*/(*nq*²) のインダクタンスを持つことが理解できる。これに枝の 長さ*l*を掛け,電流密度を電流に置き換えると,

$$\Delta V = \frac{M}{nq^2} \frac{l}{S} \frac{dI}{dt}$$

全インダクタンスは長さに比例し、断面積に逆比例することが理解できよう。このインダク タンスは**力学インダクタンス**(kinetic-inductance)と呼ばれるが、その成因は何であろうか。 これは実は電子の慣性から来ている。電子の質量によって、電子は簡単には速度を帰ることが できない。つまり電流を流れ続けさせようという原因となる。これがインダクタンスとして観 測されるのである。原因は力学的なものであっても、回路的には自己インダクタンスと何ら変 わるところがない。

さて、第一項も第二項も無視できない場合はどうなるのであろうか。

grad
$$V = \frac{M}{nq^2} \frac{d\mathbf{J}}{dt} + \frac{d\mathbf{A}}{dt}$$

となる。これより

$$\Delta V = \frac{M}{nq^2} \frac{d}{dt} \int d\boldsymbol{r} \cdot \boldsymbol{J} \frac{d}{dt} \int d\boldsymbol{r} \cdot \boldsymbol{A}$$

が得られる。つまり力学インダクタンスと磁気インダクタンスの合計が得られる。

B.4 フラクソイドの量子化

超伝導は巨視的量子効果によって、多数の電子を持ちながら一つの量子状態に陥るため Bohr の量子条件のような磁束(厳密にはフラクソイド)の量子化現象が発生する。

一つの量子状態なので Ψ(r) のように記述することができる。しかも電荷密度は中性条件 から n とほぼ固定になっているので、Ψ(r) = $\sqrt{n} \exp(i\theta(\mathbf{r}))$ と記載することができる。そこ で $p = -i\hbar \nabla$ なる演算子をこれに施すと、 $\hbar \nabla \theta \sqrt{n} \exp(i\theta(\mathbf{r})) = \hbar \nabla \theta \Psi(\mathbf{r})$ となる。つまり $p = \hbar \nabla \theta$ としてよい。例えばループ状の超伝導体を辿って一周すると、位相 θ は矛盾しては いけないから θ の変化は 2π の整数倍に限られることになる。これより

$$\int \boldsymbol{r} \cdot \boldsymbol{p} = 2n\pi\hbar = nh$$

が導かれる。

なお、この式の最後の等号以後は \hbar の代わりに $h/2\pi$ を用いることとする。 $q \operatorname{grad} V = d\mathbf{p}/dt$ より、 $\int dt \Delta V = \int d\mathbf{r} \cdot \mathbf{p}/q$ である。この電圧の時間積分を**フラクソイド**(fluxoid) Φ と呼ぼう。

$$\Phi = \int dt V$$

これより、上式は次のように置き換えられる。

$$\Delta \Phi = \frac{1}{q} \int d\boldsymbol{r} \cdot \boldsymbol{p} = \frac{h}{2\pi q} \Delta \theta$$

ここで、 $\Delta \Phi \diamond \Delta \theta$ は、線積分路の終点と始点における差である。これより

$$\Delta \Phi = n \frac{h}{q} = n \Phi_0$$

である。いうまでもなく $\Phi_0 = h/q$ である。超伝導体中では電子二個がクーパーペアを作って いるので $\Phi_0 = h/2e = 2 \times 10^{-12}$ Wb である。これを**磁束量子**(flux quantum)という。英 語を見るとフラクソイド量子であるが,日本語では磁束量子と呼んでいる。

もし、フラクソイドの概念を使うならば、前節最後の式は次のように書くことができる。

$$\Delta \Phi = rac{M}{nq^2} \int dm{r} \cdot m{J} + \int dm{r} \cdot m{A}$$

この線積分を閉ループに対して行えば

$$n\Phi_0 = rac{M}{nq^2}\int dm{r}\cdotm{J} + \Phi_m$$

左辺は量子化を示している。また,第二項はベクトルポテンシャルの線積分が,ループを鎖 交する磁束 Φ_m になっていることを利用している。例えば,第二項が支配的な場合には,鎖交 磁束が磁束量子の整数倍になる。これが真の意味での磁束の量子化である。また,第一項が支 配的な場合には,Bohr の量子条件と呼ばれる力学的運動量の量子条件が得られる。一般には フラクソイドの量子化となる。

B.5 超伝導回路の解析

普通の回路では、**キルヒホフの電流則**(Kirchhoff current law)(Kh-*I*)と**キルヒホフの電 圧則**(Kirchhoff voltage law)(Kh-V)が基本にある。これらは分岐点での電流の総和が 0 になることと、ループに沿った電位差の総和が 0 になることで表される。

Kh-I:
$$\sum I_i = 0$$
 (分岐点)
Kh-V: $\sum V_i = 0$ (ループ)

超伝導回路でも、これらの法則は当然成立するが、超伝導体がループを作っていると、フラ クソイドが一定に保たれるという性質がある。しかも、その一定値は磁束量子の整数倍にな る。より厳密にいうと、超伝導体およびジョセフソン素子の**フラクソイド**(fluxoid)の総和が 量子化される。

電圧を時間積分したものはフラクソイドであるので,要するに Kh-V 則を時間積分したキル ヒホフのフラクソイド則(Kirchhoff fluxoid law)が成立する。

Kh-
$$\Phi$$
: $\sum \Phi_i = n\Phi_0$ $(\mathcal{V} - \mathcal{Z})$

この式を時間微分すると Kh-V 則となるので,普通の回路理論と矛盾している訳ではない。 なお,電荷のない通常の超伝導体回路の世界では ▽² V = 0 が成立するので,この式より,フ ラクソイドについても,次式が成立する。

180

$$\nabla^2 \Phi = 0$$

この式は p = mv + eA の両辺の div をとっても証明できる。右辺第一項は div J に比例するが、これは電流連続の式より 0 となる。右辺第二項は div A に比例するが、これははて…

こうした回路を解析するには,通常の回路解析の電位をフラクソイドに置き換えるだけでよい。次に回路内に適当な数の電源を置く必要がある。そうでないと,すべてが0になってしまうからである。これら電源から見たインピーダンスや相互インピーダンスを求めることになる。解くべき変数は,ループの電流,または分岐点のフラクソイドのいずれを選ぶかがある。

ループ電流を変数に選んだ場合,変数の数はループ数*l*となる。これにより,各枝の電流が 決定できるので,各枝のインピーダンス(の時間積分)を利用して,各枝のフラクソイド差が 求められるが,これらには Kh-Φ 則が成立しなければいけない。ループ数の条件があるので, 条件数と変数の数が一致し,問題は解けることになる。なお,ループ電流を変数とする限り, Kh-*I* 則は自動的に満たされる。

分岐点フラクソイド(電位の時間積分値)を変数に選んだ場合,変数の数は分岐点数 n となる。これにより,各枝の両端のフラクソイド差が決定されるので,各枝のインピーダンス(の時間積分)を利用して,各枝の電流が求められる。各分岐点で Kh-I 則が成立していなければならないので,n 個の条件が存在することになり,やはり一義に解くことができる。超伝導インピーダンスを計算するには,この方法が適している。

各枝の電流やフラクソイドを変数にすることも可能であるが,一般に,変数の数が多くなり,実用的ではない。

B.6 超伝導線路のインダクタンス

いままで述べたことを利用して超伝導線路のインダクタンスを計算してみよう。まず,平行 平板線路とする。線路終端のフラクソイドの値は上下で等しいもの(0)とする。また入力端 でも上下の各超伝導体内で一定とする。このような条件では ▽² Φ = 0 の条件より,Φ は,上 下の各超伝導体内で z 方向にのみ線形に変化し,x 方向には変化しないことが誘導できる。

また,電流もベクトルポテンシャルも線路方向 *z* 軸方向となる。このとき,電流とベクトル ポテンシャルを結び付ける式は

$$\frac{d^2 A_z}{dx^2} = -\mu_0 J_z$$

である。

また、フラクソイドの量子化の節で述べたように、次の式が成立する。

$$\Phi = \frac{M}{nq^2} \int dr J_z + \int dr A_z$$

この式を x 方向で微分すると,

$$0 = \frac{M}{nq^2}\frac{dJ_z}{dx} + \frac{dA_z}{dx}$$

もう一度微分し、 A_z と J_z の式へ代入すると、

$$\frac{M}{nq^2}\frac{d^2J_z}{dx^2} = \mu_0 J_z$$

これから J_z の x 方向の分布が、上の超伝導体中、ギャップ中、下の超伝導体中と、得られる。

$$J_z = J_0 \exp\left(-\frac{x - h/2}{\lambda}\right)$$
$$J_z = 0$$
$$J_z = -J_0 \exp\left(\frac{x + h/2}{\lambda}\right)$$

ただし、 $\lambda = \sqrt{M/\mu_0 nq^2}$ である。なお、上下対称性を考慮している。つまり $x \to -x$ に対し、 $J_z \to -J_z$ となることを利用している。これより

$$A_{z} = -\mu_{0}\lambda^{2}J_{0}\exp\left(-\frac{x-h/2}{\lambda}\right) + Bx + D$$

$$A_{z} = Cx$$

$$A_{z} = \mu_{0}\lambda^{2}J_{0}\exp\left(\frac{x+h/2}{\lambda}\right) + Bx - D$$

ここでも、上下対称性を考慮している。さて、超伝導が十分厚いとすると、境界条件として、 $x \to \infty$ で $\partial A_z/\partial x \to 0$ 、および $x = \pm h/2$ で A_z と $\partial A_z/\partial x$ が連続が成立し、これらの式の B, D, Cを決定することができる。

$$A_{z} = -\mu_{0}\lambda^{2}J_{0}\exp\left(-\frac{x-h/2}{\lambda}\right) + \mu_{0}\lambda J_{0}(\lambda+h/2)$$
$$A_{z} = \mu_{0}\lambda J_{0}x$$
$$A_{z} = \mu_{0}\lambda^{2}J_{0}\exp\left(\frac{x+h/2}{\lambda}\right) - \mu_{0}\lambda J_{0}(\lambda+h/2)$$

これらの結果を用いて $\partial \Phi / \partial z$ は、上下の超伝導体中で、次のようになる。

$$\frac{\partial \Phi}{\partial z} = \mu_0 \lambda J_0 (\lambda + h/2)$$
$$\frac{\partial \Phi}{\partial z} = -\mu_0 \lambda J_0 (\lambda + h/2)$$

つまり、上下左両端の Φ の差は、線路長を l として

$$\Delta \Phi = \mu_0 \lambda J_0 (2\lambda + h) l$$

となる。

一方,線路の幅を w とすると,総電流 I は

$$I = \lambda w J_0$$

これから、インダクタンス $L = \Delta \Phi / I$ は

$$L = \mu_0 \frac{(2n\lambda + h)l}{w}$$

となる。つまり,通常の線路間ギャップ h が,両側の超伝導体に磁界が λ ずつ浸みこんだだ け増加したのと,同じ解になっている。

付録 C

単位系について

19世紀末,力学の CGS 単位系を基礎に電磁気の CGS 単位系(CGS units) について種々 の提案がなされた。しかし,これらで定められた単位は実用の諸量と大きく異なり,やたらに 大きいまたは小さい数が表われ使いづらかった。そこで CGS 単位系の諸量に 10 の冪乗を掛 けた実用単位(practical unit)が提案されるようになった。現在,MKSA 単位系で使われて いる単位名称の多くはこの実用単位から来ている。これを 1902 年,厳密に CGS 単位系と無 矛盾に結び付けた MKS 単位系として整備されたのが MKSA 単位系(MKSA units)であ る。A は電流の単位であるが,それが単位系の名称に入った理由については後に詳細を述べ る。これが 1950 年頃に国際標準として認められ,さらに 1960 年,他の領域の基礎単位も含 めた形で国際標準単位系(International Standard units)または SI 単位系(SI units) に引 き継がれた。本書ではこの SI 単位系を前提に書かれている。

現在,これ以外の単位系を利用することはだんだん少なくなってきつつあるが,他の単位系 にもそれなりに便利さがあり,また歴史的意義もあって,たまに見かけることもあろう。特に 物理天文の分野ではいまだに CGS 単位系(CGS units)の一つであるガウス単位系(Gauss units)やヘビサイドローレンツ単位系(Heaviside-Lorentz units)(以後,しばしばヘビサイ ド単位系(Heaviside units)と略す)がしばしば見受けられる。

単位系の多くの書は,種々の単位系の提案された歴史の順に記述される。それも良い方法で あるが,本書では一貫して使ってきた SI 単位系の立場から他の単位系を俯瞰する立場で記述 した。

C.1 単位に関する一般的手法

電磁気学の単位系は,他の物理の単位系に比べ,圧倒的に面倒である。それは,種々の単位 系の間の単位換算の議論以外に,基本方程式の形そのものも変換されてしまうため,その議論 も必要であるからである。本章ではこの両者を明解に理解する方法を提示する。ただし,単位 に興味のない人は、読み飛ばしてもらって構わない。

電磁気学の話の前に,一つ身近な単位系に関する例を挙げよう。地上にある物体の受ける 力は

$$F = mq \tag{C.1}$$

で与えられる。重力加速度 g は 9.8 m/s² であるから, 質量 1 kg の物体は 9.8 N の力を受ける ことになる。

さて,実用的な単位として kgW(kg 重)というのが利用されている。1 kgW とは 1 kg の 質量が受ける重力と同じ大きさの力である。そこで,この単位を使うと,次式が成立する。

$$F = m \tag{C.2}$$

このように、力の単位が変わると、使われる関係式も異なるのである。

まず式 (C.1) で, *F*, *m*, *g* には数値だけでなく単位も含んでいるとしよう。すると, 質量 10 kg のとき, 式 (C.1) は次のように書ける。

$$98 \,\mathrm{N} = 10 \,\mathrm{kg} \times 9.8 \,\mathrm{m/s}^2$$
 (C.3)

本当は MKS 単位系なので,重力加速度の単位は m/s² であろうが,ここではこの式だけに閉 じて議論をしたいので,あえて「力/質量」の単位を採用した。

kgw の場合には次のように考えればよいことが想像できよう。

$$10 \,\mathrm{kgw} = 10 \,\mathrm{kg} \times 1 \,\mathrm{wm/s}^2 \tag{C.4}$$

ここで右辺の $_{\rm w}$ m/s² は kgw を使う単位系の加速度として導入した新しい単位の意味である (残念ながら kgw の世界で加速度の単位は規定されていないようである)。式 (C.2) のように 表されたのは, $g=1_{\rm w}$ m/s² の数値がたまたま 1 だったからである。数値に対し成立する方程 式は**数値方程式** (value equation) と呼ばれる。式 (C.2) は数値方程式としては成立するが, 単位に対しては問題のある式である。

これに対し, (C.1) や (C.4) は単位まで含めても成立する。このように,単位まで含めて量 として成立する式を**量方程式** (quantity equation) という。また, { 量 } を, その量の数値部 分, [量] を単位部分と記載するので,量={ 量 } [量] が成立する。数値や単位は単位系によっ て変わるので,必要に応じ, { 量 }_{mks}, mks[量] のように,数値には後サフィックス,単位名 には前サフィックスを用いる。例えば $g = 9.8 \text{ m/s}^2$ の場合, {g}_{mks}=9.8, mks[g]=m/s² とな る。また {g}_{mks} = $g/mks[g] = g/(m/s^2)$ など量,数値,単位のからんだ式が自由に書ける。 ちなみに電磁気の場合,例えば電圧 V の単位名には abV, statV のように,単位の前に単位 系に依存した名前を付すことが多いため,単位名は前サフィックスを付けることにする (ただ し,厳密には ab- や stat- はスクリプト体ではなく,通常の立体小文字である)。 量方程式が得られると、その数値部分だけでも等式が成立するし、単位部分だけでも等式が 成立する。例えば (C.3) であると数値だけの等式と単位だけの等式は以下のようになる。

$98 = 10 \times 9.8$	(数值部分)			
$1 \mathrm{N} = 1 \mathrm{kg} \times 1 \mathrm{cm/s}^2$	(単位部分:1はしばしば省かれる)			

これを利用して,単位の次元を解析することができる。また,量方程式を利用すると,単位 間の換算などは簡単に行うことができる。定数 *g* を表わすのに,MKS 単位系の (C.3) と kgw 単位系 (C.4) の二つの式を用意する。

$$g = 9.8 \text{ m/s}^2 = 98 \text{ N}/10 \text{ kg} = 9.8 \text{ N/kg}$$

 $g = 1 \text{ wm/s}^2 = 10 \text{ kgw}/10 \text{ kg} = 1 \text{ kgw/kg}$

やや見づらいかも知れないが,最初の等号は各単位系におけるgの定義である。次の等号は を用いた二つの式からgを得ている。最後の等号はこれを計算した結果である。上記の二式と も量方程式になっている。これから,9.8N/kg=1kgw/kgもしくは9.8N=1kgwという換算式 が得られる。

これらの例から想像するに,まず種々の単位系で使われる関係式を統一的に包含する量方程 式を作成する。この際,ある変数は,単位系によっては1であるため,見えない,あるいは式 に現れないこともあるので,注意が必要である。こうすることにより,関係式は数値および単 位も含めた量方程式となる。また,一つの単位系だけに着目すれば,単位の関係を求めるに は,数値を無視してよい,つまり次元解析が可能なことも理解できよう。また単位系間の換算 を行うには,同じ物理現象を異なる単位系で記述することにより,可能となる。

電磁気学でも、ここで述べたような問題が原因で、単位を複雑にしている。例えば、我々が それぞれ学んだ書で使われている式は、他の書では必ずしも同じ形とは限らないのである。例 えば、MKSA 単位系では力の式に 4π が現れ、マクスウェル方程式には現れないが、ガウス 単位系では逆である。このことから、いずれの書の式も式 (C.2) のような意味で、数値方程式 だったことが理解できよう。まずいずれの単位系でも用いることのできる量方程式を整備する ことが必要であることを、十分理解してほしい。

C.2 電磁気学における力の量方程式

電磁気学においても、単位系を決定するのはいくつかの基本方程式である。電磁気の単 位系を特徴付ける二つのキーワードがある。一つは有理か非有理という用語である。例え ば電場と電荷密度と結び付ける式が div $E = \rho/\varepsilon_0$ という形になるならば**有理** (rational), div $E = 4\pi\rho/\varepsilon_0$ ならば**非有理** (irrational) という。 もう一つは対称か非対称という用語である。例えば rot $E = -(1/c)\partial B/\partial t$ ならば、左辺の 空間微分と右辺の時間微分の関係に光速という速度の次元が入っているため、 $E \ge B$ は同じ 次元になるが、この状態を対称(symmetrical)、rot $E = -\partial B/\partial t$ ならば、両者に速度の次 元の差が生じるはずなので非対称(asymmetrical)という。

まず, CGS 単位系の上に構成された電磁単位系, 静電単位系, ガウス単位系について, これ らの単位形成に必要な力と場の方程式をを紹介する。ちなみにこれらはすべて非有理である。 また対称なのはガウス単位系だけである。

まず電荷間の**クーロンの法則**(Coulomb law)が発見された。その結果,二電荷 q,Q間に 働く力の式は次のようになる。

$$\boldsymbol{F} = \frac{1}{\varepsilon_0} \frac{q \, Q \, \boldsymbol{r}}{r^3} \tag{C.5}$$

 r/r^3 としたのは q に働く力が、Q から q に向うベクトルの方向を向いていることを示すため であり、強さとしては $1/r^2$ に比例する。この式より、等量の単位電荷を 1 cm 離し置くと、そ の間の力は $1/\{\varepsilon_0\}$ になるが、逆にこの関係から単位電荷を定義することができる。なお静電 単位系とガウス単位系では、 $\{\varepsilon_0\}=1$ としている。

ここで電場 **E** の概念を説明しておこう。電場とは電荷 *Q* がその周辺に作る結界のようなものである。*q* はその結界に入ると力を感じると理解する。

$$F = q E$$
 $E = \frac{1}{\varepsilon_0} \frac{Q r}{r^3}$ $(Q \mathcal{O}作る E)$

電荷 q を置くと, この結界 E を感じ, 力を受けると考えるのである。当然のことながら, こ れらの式から E を消去すると (C.5) に一致する。

磁気力は磁石間の力として発見された。その力の源泉は磁石先端に磁荷があるためと理解され,磁荷間にクーロンの法則と同じ法則が働くことが見出された。続いて電池が発明され,電 流と磁荷の間にも力が働くことがわかった。

$$\boldsymbol{F} = \frac{1}{\mu_0} \frac{q_m \, Q_m \, \boldsymbol{r}}{r^3} \tag{C.6}$$

$$\boldsymbol{F} = \frac{q_m \left(I \Delta \boldsymbol{r} \right) \times \boldsymbol{r}}{r^3} \tag{C.7}$$

(C.6) より,等量の単位磁荷を1cm 離し置くと,その間の力は1/{μ₀} になるが,逆にこの関 係から単位電荷を定義することができる。なお静電単位系とガウス単位系では,{μ₀}=1とし ている。また (C.7) の係数は1となる。

これらを場という立場で表現することを考える。磁荷の感じる場を磁場 **H** (現在はこれを磁 場強度と呼ぶ)とすると, (C.6) および (C.7) より磁荷および電流素片の作る **H** が得られる。

$$F = q_m H \qquad H = \frac{1}{\mu_0} \frac{Q_m r}{r^3} \qquad (Q_m \text{ O} 作る H)$$

$$F = q_m H \qquad H = \frac{(I\Delta r) \times r}{r^3} \qquad (I\Delta r \text{ O} 作る H) \qquad (C.8)$$

磁荷の作る \boldsymbol{B} は $\mu_0 \boldsymbol{H}$ で与えられるので, (C.7) の $q_m \to Q_m$, $I\Delta \boldsymbol{r} \to i\Delta \boldsymbol{r}'$ と書き換えるこ とで,電流素片の感じる磁場 \boldsymbol{B} (昔は磁束密度という名称)を求めることができる。

$$F = (i\Delta r') \times B$$
 $B = \frac{Q_m r}{r^3}$ $(Q_m \text{ の作る } B)$ (C.9)

以下の関係が確認できよう。

$$\boldsymbol{B} = \mu_0 \boldsymbol{H}$$

さらに電流素片の作る *H* は (C.8) に与えられているので,これから電流素片の作る *B* を求め, (C.9) の電流素片と *B* の関係を代入すると,電流素片間の力を求めることができる。

$$F = (i\Delta r') \times B$$
 $B = \mu_0 \frac{(I\Delta r) \times r}{r^3}$ $(I\Delta r \text{ of fed } B)$

実は元々のガウス単位系では、電流として電流連続の式 $I^e = -\partial Q/\partial t$ を満す $I^e = I/c$ を 使っている。その場合、(C.7) の力の式は次のように 1/c の係数が入ってくる。さらに電流素 片同士の力には μ_0/c^2 の係数が付く。

$$\boldsymbol{F} = \frac{1}{c} \frac{q_m \left(I^e \Delta \boldsymbol{r} \right) \times \boldsymbol{r}}{r^3}$$

筆者がガウス単位系においてこの I^e を使わずに $I = I^e/c$ を意図的に使った理由については 本章の C.4 節にて説明する。ちなみに、 I^e と I の二つの定義が存在するのは、ガウス単位系 のような対称系においてのみである。その他の静電単位系、電磁単位系、MKSA 単位系では I^e と I は完全に一致している。

続いて MKSA 単位系における力と場の方程式を思い起こして欲しい。CGS の諸単位系と ほとんど同じであるが,すべての式の頭に $1/4\pi$ が追加されている。実は CGS の諸単位系 の力の方程式からマクスウェル方程式を導出すると,後に示すように電荷密度および電流密 度の項に 4π が入った形となる。MKSA 単位系の制定の際には,この 4π がマクスウェル方 程式に出現しないように調整が行われた。つまり,すべての力の式の定数部分にあらかじめ $1/4\pi$ を入れておくのである。この作業を**有理** (rational) 化と呼ぶ。なお,MKSA 単位系で も $B = \mu_0 H$ の関係は CGS の諸単位系と変らない。

有理化を行うと、結果的に単位電荷、磁荷、電流間の力が電磁単位系のものに対し、 $1/4\pi$ 倍 になってしまう。今迄と同じ力を基準にして単位の量を決定すると、 $\sqrt{4\pi}$ 倍になってしまう

と言い替えてもよい。これを避けるために, μ_0 に 4π を, ϵ_0 に $1/4\pi$ を忍び込ませ,式は形式的に有理化されるが,数値的には前と同じになるように工夫した。

これだけ工夫をしても、CGS 単位系を MKS 単位系に変更したため、単位電荷、磁荷、電流 には 10 の冪乗の倍数が残ってしまう。そこで、MKSA 単位系の直前に提案された別の MKS 単位系である**実用単位系**(practical unit)ではさらに余計な 10 の冪乗を追加して、諸単位量 が実用的な量となるように調整を行った。特に、単位電位が電池の端子間電圧に近くなるよう に調整が行われた。この結果、10⁷ が追加で導入されたのである。

これまでに出現した ε₀, μ₀ が各単位系でどのように定義されているかを表にする。

表 C.1 単位系による $\{\varepsilon_0\}, \{\mu_0\}$

$c_{\rm c}, c$	cm は	CGS,	MKS 単位系での光速値で約 3 · 10 ¹⁰ ,	$3 \cdot$	10^{8}	;
----------------	------	------	---------------------------------------	-----------	----------	---

定数の数値	電磁単位系	静電単位系	ガウス単位系	MKSA 単位系
$\{\mu_0\}$	1	$1/c_{ m c}^2$	1	$4\pi/10^{7}$
$\{\varepsilon_0\}$	$1/c_{ m c}^2$	1	1	$10^7/4\pic_{ m m}^2$

ちなみに *c*_c, *c*_m はそれぞれ, CGS 単位系, MKS 単位系における光速の数値であり,およ そ 3 · 10¹⁰, 3 · 10⁸ である。ガウス単位系以外で,なぜこのような光速の絡む複雑な数値を基 礎的な定数に含ませたのかは次節で明かになる。改めて表から分るように, MKSA 単位系は 電磁単位系に近い。それに有理化の 4π の補正と 10 の冪乗補正をしているだけである。

さて CGS の諸単位系と MKSA 単位系双方の力および場の式がわかったが,式の形が若干 異なる。つまり,共に量方程式ではないのである。そこで両単位系の統合を行なおう。両者の 違いは式の頭に現われた係数部分が一致していないことだけである。まず頭に現われた係数部 分を表 C.2 にまとめたので,比較してみよう。なお,現在は磁荷というものは分子,原子レベ ルの電流によって作られていると考えるため,磁荷の関わる行には「*」により注記した。

表 C.2 力の方程式の係数 (*印は現在磁荷の概念が無くなったため,不要)

力の式の係数	CGS 諸単位系	MKSA 単位系	万能単位系
二電荷間	$1/\varepsilon_0$	$(1/4\pi)/\varepsilon_0$	$(\lambda/4\pi)/\varepsilon_0$
二磁荷間*	$1/\mu_0$	$(1/4\pi)/\mu_0$	$(\lambda/4\pi)/\mu_0$
磁荷電流間*	1	$1/4\pi$	$(\lambda/4\pi)$
二電流間	μ_0	$(1/4\pi)\mu_0$	$(\lambda/4\pi)\mu_0$

この表を見て,現在標準となっている MKSA 単位系の方を基準に,それを CGS 諸単位系 に合せる工夫を行うことにする。MKSA 単位系にある 4π を, CGS 単位系で打ち消すために, λ なる定数を導入する。本書ではこの λ に数値だけでなく単位も与えることにより,単位間の 関係をすっきりさせることを特徴としている。単位については後述するとし,数値を { λ } とす る。有理な MKSA 単位系では { λ }=1 であるのが,非有理の系では { λ } = 4 π とするのであ る。この意味で, λ は方程式の有理/非有理を切り替える定数なので**有理化定数** (rationalizing constant) と呼んでおこう。

統合は簡単であり、MKSA 単位系の力と場の方程式を元に、頭の係数のみをこの表の万能単 位系の欄のものに置き換えるだけでよい。具体的な式は後述するが、CGS 諸単位系と MKSA 単位系を統合しただけであるにも関わらず、今迄提案されてきた全ての単位系をカバーできる ため、量方程式であるとも言える。

場の量方程式が確立すれば、この節の話はほぼ終わりであるが、もう一つ追加したい話があ る。1957年に当時のソ連が初の人工衛星を打上げ、米国はスプートニクショックを受けた。 ソ連に挽回すべく、理科教育の振興が勃興し、物理の教育にも大きな改革がなされた。その一 環が電磁気学の考え方の変更である。それまで、磁気力の源泉を磁荷と電流の双方にあるとし てきたのだが、ミクロの物理にまで立ち入り、磁気力はすべて電流によるという統一化が図ら れた。その結果、磁荷という概念はまったく消え失せ、**H** は物質が関わらない限りおもてに は出現しなくなってしまったのである。現に、次節で示すマクスウェル方程式の導出では、電 荷の作る電場の式と電流の作る磁場の式しか使わないのである。

著者の学生時代は 1965 年前後であったが,当時電磁気学の教科書で著名であった山田直平 教授が前年は磁荷の作る **H** を基に講義をされていたのが,翌年は電流の作る **B** を基にされた のが印象的であった。もっとも受講生のこちらは大変であったが。

ということで、力と場の方程式を示す。

(カと場の量方程式)

 $F = q E \qquad E = \frac{\lambda}{4\pi\varepsilon_0} \frac{Q r}{r^3} \qquad (Q \quad O \not = \delta E) \quad (C.10)$ $F = (i\Delta r') \times B \qquad B = \frac{\lambda \mu_0}{4\pi} \frac{(I\Delta r) \times r}{r^3} \qquad (I\Delta r \quad O \not = \delta B) \quad (C.11)$

(使われない量方程式)

 $F = q_m H$ $H = \frac{\lambda}{4\pi\mu_0} \frac{Q_m r}{r^3}$ $(Q_m \text{ Oless } H)$ $F = q_m H$ $H = \frac{\lambda}{4\pi} \frac{(I\Delta r) \times r}{r^3}$ $(I\Delta r \text{ Oless } H)$ $F = (i\Delta r') \times B$ $B = \frac{\lambda}{4\pi} \frac{Q_m r}{r^3}$ $(Q_m \text{ Oless } B)$

やや横道にそれるが、単位電流を決定するような実験的な場合にはビオ・サバールの法則で なく、これの線積分の結果であるアンペール力(Ampere force)の式を用いる。これは、十分 に長い平行に置かれた二線に電流が流れているときに働く、単位長当たりの引力の量方程式を 示す。

$$f = 2\frac{\lambda\mu_0}{4\pi}\frac{iI}{r} = i|\mathbf{B}| \qquad \qquad \therefore$$
だし
$$|\mathbf{B}| = 2\frac{\lambda\mu_0}{4\pi}\frac{I}{r} \qquad (C.12)$$

このアンペール力(Ampere force)の式の方が Δr が入っていないため分りやすいかも知れ ない。ただし,係数 2 が付く事に注意してほしい。実際,MKSA 単位系では 2019 年までは この式を使って,単位電流 A が決定され,それが MKSA 系全体の単位の基礎とされてきた のである。つまり,2本の1m 離れた平行線に等量の電流を流し,その間に働く力が単位長当 り { $\lambda\mu_0/4\pi$ } になった時の電流値を単位電流と定めるのである。MKSA 単位系ではこの力は 1/10⁷N である。なお,2019 年の SI 単位系の改訂により電磁気系の単位は電子の電荷を基準 にすることが決定されたので,現在はいわば MKSC 単位系になったと言えるかも知れない。

C.3 時変系の量方程式

ここまでは場の時間変化を考慮しなかったが,それを微分形に対し行ったのがマクスウェル である。

C.3.1 マクスウェル方程式の量方程式

力と場の量方程式から、これらと矛盾しないマクスウェル方程式の**量方程式**(quantity equation)を示しておこう。といっても、本節に記載したほぼすべての事項が単位系の議論と は直接関係しない。 λ を導入することにより、マクスウェルの量方程式が美しくなっているこ とを確認するのが主な仕事である。マクスウェル方程式は $E \ge B$ の場だけが含まれる方程式 であり、かつ磁荷の概念は使っていない。このため、場の量方程式で、(C.10) と (C.11) だけ が基礎になっている。したがって、MKSA 単位系の場の式で $\mu_0 \rightarrow \lambda \mu_0$ 、 $\varepsilon_0 \rightarrow \varepsilon_0/\lambda$ に置き 換えることにより得られた力の量方程式を基本にしているので、マクスウェル方程式もこの置 き換えを行えば直ちに得られる。

ただし、この置き換えには一つ隠れた自由度がある。そもそも力と場の量方程式には時間微 分の入った項は入っていない。そこで**ファラデーの法則**(Faraday law)を表わす (C.14)、お よび**変位電流**(displacement current)の概念を与える (C.15) の両式の時間微分に γ という 新しい定数の逆数を追加した。これを c にすれば、B と E の単位を合せる、つまり対称にで きるのである。

div
$$\boldsymbol{E} = \frac{\lambda}{\varepsilon_0} \rho$$
 (C.13)

$$\operatorname{rot} \boldsymbol{E} = -\frac{1}{\gamma} \frac{\partial \boldsymbol{B}}{\partial t} \tag{C.14}$$

div
$$\boldsymbol{B} = 0$$

rot $\boldsymbol{B} = \lambda \mu_0 \boldsymbol{J} + \frac{\mu_0 \varepsilon_0}{\gamma} \frac{\partial \boldsymbol{E}}{\partial t}$ (C.15)

ここまで来ると, λ の意味がよりはっきり見えてくる。CGS 三単位系では { λ } = 4 π であった。そうすると明かにマクスウェルの式の ρ , J の前に 4 π が入るようになる。一方, MKSA 単位系では { λ }=1 であるので, ρ , J の前に 4 π は入らない。このため MKSA 単位系などを **有理** (rational) と呼び, CGS 三単位系は**非有理** (irrational) と呼ぶのである。

もう一つの新たに導入された定数 γ はほとんどの単位系で 1 であるため,効果が分りづらい が,時間微分に 1/ γ を入れ,これが対称単位系では 1/c になるようにする。これにより,右辺 の時間微分が空間微分と同じ次元になり,**B** と **E** の単位が一致するようになる。 $\gamma = c$ であ る単位系を**対称** (symmetrical) であると言い, γ は**対称化定数** (symmetrizing constant) と 呼ぶことにする。今迄に紹介した単位系の中ではガウス単位系だけが対称である。

さて, (C.14) と **J**=0 とした (C.15) を連立すると, **B** だけ, もしくは **E** だけの方程式が得 られる。

$$\left(\nabla^2 - \frac{\varepsilon_0 \mu_0}{\gamma^2} \frac{\partial^2}{\partial t^2}\right) \boldsymbol{B} \quad (\text{or } \boldsymbol{E}) = 0$$

これらは, **B** もしくは **E** の波動方程式になっている。この波動は光であることがわかっており,次式が得られる。

$$\frac{\mu_0\varepsilon_0}{\gamma^2} = \frac{1}{c^2} \tag{C.16}$$

この式を使ってマクスウェル方程式 (C.13) から (C.15) の ε_0 を他の変数で置き換えてみよう。

div
$$\boldsymbol{E} = \lambda \mu_0 (c/\gamma)^2 \rho$$
 (C.17)
rot $\boldsymbol{E} = -\frac{1}{\gamma} \frac{\partial \boldsymbol{B}}{\partial t}$
div $\boldsymbol{B} = 0$
rot $\boldsymbol{B} = \lambda \mu_0 \boldsymbol{J} + \frac{1}{(c/\gamma)^2} \frac{1}{\gamma} \frac{\partial \boldsymbol{E}}{\partial t}$ (C.18)

定数 *c*/γ は非対称単位系では *c*,対称単位系では 1 となる。

C.3.2 電流連続の法則

式 (C.18) の div をとると、左辺は 0 になるので、次式が得られる。

$$\lambda \mu_0 \operatorname{div} \boldsymbol{J} + \frac{\gamma}{c^2} \frac{\partial}{\partial t} (\operatorname{div} \boldsymbol{E}) = 0$$

第二項の div $E \in (C.17)$ で置き換えると、直ちに時間微分の係数として $1/\gamma$ の入った電流連続の法則(current continuity law)の量方程式が得られる。

$$\operatorname{div} \boldsymbol{J} + \frac{1}{\gamma} \frac{\partial \rho}{\partial t} = 0$$

これを体積積分すると、電流連続の法則の積分形が得られる。

$$I + \frac{1}{\gamma} \frac{\partial Q}{\partial t} = 0 \tag{C.19}$$

C.3.3 ポテンシャルの量方程式

ポテンシャル関連の式は次のようになる。

$$E = -\operatorname{grad} \phi - \frac{1}{\gamma} \frac{\partial A}{\partial t}$$
$$B = \operatorname{rot} A$$

すると、 ϕ , A の満すべき式は、

$$\left(\nabla^2 - \frac{\mu_0 \varepsilon_0}{\gamma^2} \frac{\partial^2}{\partial t^2}\right) \phi = -\frac{\lambda}{\varepsilon_0} \rho$$
$$\left(\nabla^2 - \frac{\mu_0 \varepsilon_0}{\gamma^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{A} = -\lambda \mu_0 \mathbf{J}$$

またローレンス条件は,

$$\operatorname{div} \boldsymbol{A} + \frac{\mu_0 \varepsilon_0}{\gamma^2} \frac{\partial \phi}{\partial t} = 0$$

式 (C.16) を使って ε_0 を消去すると,

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \phi = -\lambda \mu_0 (c/\gamma)^2 \rho$$
$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{A} = -\lambda \mu_0 \mathbf{J}$$
$$\operatorname{div} \mathbf{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t} = 0$$

C.3.4 エネルギー

ここで**ローレンツカ**(Lorentz force)を誘導しておこう。ローレンツ力とは運動している電荷に働く力である。運動していると局所的な電流が流れていることになるので,電場以外に磁場の影響も受けることになる。電荷 q が $\Delta r'$ 方向に $\Delta r'$ の長さだけ一様に拡がっているとしよう。電荷の速度を v とすると,その方向は $\Delta r'$ 方向である。(C.19) で述べたように,i は単位時間当りに $\Delta r'$ と直交する断面を通過する電荷量の $1/\gamma$ 倍であるので, $i = (q/\Delta r') \times v/\gamma$ である。つまり $i\Delta r' = q \times v/\gamma$ となる。

ローレンツ力は q にかかる電場 E の力と $i\Delta r'$ の和であるため,結局次式で与えられることとなる。

$$oldsymbol{F} = q\left(oldsymbol{E} + rac{1}{\gamma}oldsymbol{v} imes oldsymbol{B}
ight)$$

またこれから導出されるポインティングベクトル *S* およびエネルギー密度 *u* は以下にようになる。

$$S = \frac{1}{\lambda\mu_0} E \times B$$
$$u = \frac{1}{2\lambda\mu_0} \left((\gamma/c)^2 E^2 + B^2 \right)$$
(C.20)

これらは,運動エネルギー密度 uk の単位時間当たりの増加量と次式で結び付けられる。

div
$$\boldsymbol{S} + \frac{1}{\gamma} \frac{\partial}{\partial t} (u + u_k) = 0$$

もしくはこれを体積積分した次式を見てみよう(*dS* は面微分要素を示し, *S* はポインティン グベクトルであることに注意)。

$$\frac{1}{\gamma}\frac{\partial}{\partial t}\int_{\mathbf{V}}dV(u_k+u) = -\oint_{\mathbf{S}}d\boldsymbol{S}\cdot\boldsymbol{S}$$
(C.21)

左辺は体積内のエネルギー(これを U としよう)の変化であり,右辺の負号を外したものは, それを囲む面を通過するエネルギーの流出になっている。したがって P = ∮ dS · S は電力で あることが理解できよう。

C.4 対称系における電流の定義

対称単位系であるガウス単位系では電流に $I \ge I^e$ の二つの定義があるなどちょっと複雑な 事情があるので、ここに改めて議論しよう。非対称単位系では $\gamma = 1$ であちこちに c が残る が、対称単位系では $\gamma = c$ であるので、マクスウェル方程式は次のようになる。

div
$$\boldsymbol{E} = \lambda \mu_0 \rho$$

rot $\boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$
div $\boldsymbol{B} = 0$
rot $\boldsymbol{B} = \lambda \mu_0 \boldsymbol{J} + \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t}$

これらの式で対称というのは, (C.14) および (C.15) の時間微分項に 1/c を入れることである。 同様に電流連続の法則については対称単位系では $\gamma = c$ であるため次式のように時間微分記 号に c がつく。

$$I + \frac{1}{c}\frac{\partial Q}{\partial t} = 0$$

ポテンシャルの式は,

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \phi = -\lambda \mu_0 \rho$$
$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \mathbf{A} = -\lambda \mu_0 \mathbf{J}$$
$$\operatorname{div} \mathbf{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t} = 0$$

エネルギーに関係する式は,

$$egin{aligned} m{F} =& q\left(m{E} + rac{1}{c}m{v} imes m{B}
ight) \ m{S} =& rac{1}{\lambda \mu_0}m{E} imes m{B} \ u =& rac{1}{2\lambda \mu_0}\left(m{E}^2 + m{B}^2
ight) \end{aligned}$$

また、Sとuの間には次式が成立する。

$$\operatorname{div} \boldsymbol{S} + \frac{1}{c} \frac{\partial}{\partial t} (u + u_k) = 0$$
$$-\frac{1}{c} \frac{\partial}{\partial t} \int_V dV(u + u_k) = \oint_S d\boldsymbol{S} \cdot \boldsymbol{S} = P$$

対称単位系では等しい単位で表現することができる量が多い。

 $\mu_0 = 1/\varepsilon_0$ (単位も数値も等しい) $[\mathbf{r}] = [ct]$ $[\mathbf{B}] = [\mathbf{E}]$ $[\mathbf{J}] = [\mathbf{\rho}]$ $[I\Delta\mathbf{r}] = [Q]$ $[\mathbf{S}] = [u]$

対称単位系では空間微分に *ct* が対応することに着目してほしい。一方, ガウス単位系で元々 使われていた *I^e* は次式を満す。

$$I^e + \frac{\partial Q}{\partial t} = 0$$

つまり $I^e = \gamma I = cI$ が成立する。他の単位系では同じ量となる二つの量はガウス単位系では 異なる定義となるのである。 I^e が電荷の流れという意味で定義されたのは明かであるが,対 称単位系の時間微分には確実に c が付随することから,ガウス単位系での電流に I^e を使うの はおかしいというのが著者の意見である。ちなみに I^e は電荷から規定されているいわば静電 系電流であるため e を肩につけた。

なお、対称単位系では $I^e = \gamma I$ や電流密度 $J^e = \gamma J$ のように、 $S^e = \gamma S$ を用いるケースも 少なくない。この場合、 $P^e = \gamma P$ となり、 $P^e = \oint d\mathbf{S} \cdot (\mathbf{S}^e/c)$ となる。また、(C.20) および (C.21) は次式のようになる。

$$oldsymbol{S}^e = rac{c}{\lambda \mu_0} oldsymbol{E} imes oldsymbol{B}$$

その場合, S^e と u の間には,時間微分に c の入らない関係が成立する。

div
$$\mathbf{S}^e + \frac{\partial}{\partial t}(u + u_k) = 0$$

 $-\frac{\partial}{\partial t} \int_V dV(u + u_k) = \oint_S d\mathbf{S}^e \cdot \mathbf{S} = P^e$

改めて, 著者がなぜガウス単位系において元々の電流の定義である I^e を使わず, $I = I^e / \gamma = I^e / c$ を使ったかの理由を以下に強調する。

- 対称な系では時間微分には 1/c が入るべきであり、電流連続の式は $I = -(1/c)\partial Q/\partial t$ となるべきなのに、 I^e はそれを満していない。
- 検電流素片が $I^e \Delta r'/c$ になってしまう。具体的には磁荷が作る H に対応する $B(=\mu_0 H)$ が (C.9) に記載されているが、これと電流素片–磁荷間の力を比較するとこのこ とが言える。通常、検電荷にせよ、検磁荷にせよ、単位電荷や単位磁荷を用いるのに、

検電流素片だけ単位検電流素片の 1/c 倍のものを使用するのは一貫性を欠くし、当然対称性は崩れる。この検電流素片に関する問題については、 $B = (\mu_0/c)H$ と定義すれば解消する。しかし、そうするとマクスウェル方程式で $E \ge B$ が非対称になってしまうので、根本的問題解決にはならない。

このように,非対称な式を満す *I^e* はあちこちで不具合を起こす。そこでこの章の主な流れは, 対称性を維持できる *I* を使って行い,単位変換の議論など,*I^e* に対する説明が必要なところ に対しては注記をもって示すこととする。

C.5 単位系の歴史と定数

{λ}, {μ₀}, {ε₀}, {γ} の 4 つの定数の数値を定めると電磁気の単位系は完全に決定される。 いままで提案されてきた主な単位系について,これらの数値がどうなっているかを歴史的経緯 に沿って簡単に紹介しよう。なお,各単位系の名称の直後に括弧で示したのは次節で述べる単 位名に用いる接頭語である。次節を読む際に参考にしてほしい。

電磁気の単位系の元祖は**ガウス**(Gauss)であると言われている。それは彼が各地の地磁気 を測定したからである (1832 年)。あちこちの地磁気を比較するには何らかの基準が必要であ る。それを等量の磁荷が及ぼし合う力が単位力 (CGS で言えば 1dyn *1) となる際の磁荷量と した。これを磁気単位系(magnetic units)とも呼ぶ。また、電荷の基準も単位力を及ぼし合 う電荷量とすべきと主張していた。

以下に述べる CGS 単位系の多くは、ガウスの地磁気測定の共同研究者であったヴェーバー によって作られた。

電磁単位系(electromagnetic units)(ab: 以下単位名につける接頭語) ガウスの磁気単位 系(magnetic units)に加え, **ヴェ**ーバー(Weber)は磁荷–電流の相互作用から単位電流を 定めた (1840 年)。この時はまだ磁気単位系 (magnetic units)と呼んでいた。後に電流– 電流の相互作用の関係も整理し,それから他の種々の電磁気系の量の単位を定め電磁単 位系 (electromagnetic units)とした (1856 年)。つまり, $\{\lambda\} = 4\pi$, $\{\mu_0\} = 1$, $\{\gamma\} = 1$ として,単位磁荷,単位電流を決定し,それから電流連続の式から単位電荷を決定した。 これらを基本に,他の単位が決定される。磁場関連の力の式には1以外の係数は入らな い。CGS,**非有理,非対称**な単位系である。CGS-emu とも呼ばれ,以後の諸単位系 の基本となった。

電気定数(electric constant)は $\{\varepsilon_0\} = 1/c_c^2$ となる。また、この電気定数を使って単

^{*1} ガウスは当初,力学系の単位として mm, mg, s を用いたが,その後 cm, g, s を用いるように改訂されたため CGS 単位系とした。

位電荷を決定する。ただし、 c_c は CGS 単位系での光速値で約 3 · 10¹⁰ を意味することとする。

静電単位系(electrostatic units)(stat) ヴェーバー(Weber)は単位力を及ぼし合う電荷 より単位電荷を定め、静電単位系、あるいは CGS-esu を定めた (1846 年)。CGS、非 有理、非対称な単位系である。電気単位系と呼ぶべきかも知れないが、それゆえ電荷間 の力の式には1以外の係数は入らない。つまり、 $\{\lambda\} = 4\pi, \{\varepsilon_0\} = 1, \{\gamma\} = 1$ として 単位電荷を決定し、それから電流連続の式から単位電流を決定した。 なお、ヴェーバーはその後、静電単位系から得た単位電流(本書では *I^e* の単位)と電

磁単位系から得た単位電流(本書では *I* の単位)の次元に,速度の比があることの気付き,コールラウシュ(Kohlrausch)と共同でこの値を求め,光速に近いことを指摘した (1856 年)。後にファラデーの光の電磁波説 (1846 年)を数学的に示したマクスウェル (Maxwell)の電磁場理論 (1861 年)の証左となった。

磁気定数(magnetic constant)は $\{\mu_0\} = 1/c_c^2$ となる。また、この磁気定数を使って 単位磁荷や単位電流を決定する。

ガウス単位系(Gauss units)(gs) ヘルムホルツ(Helmholtz)とヘルツ(Hertz)が磁気系 量には電磁単位系,電気系量には静電単位系を用いたガウス単位系(Gauss units)を 制定した (1850 年)。当然のことながら,電磁単位系,静電単位系との整合性は比較的 よい。CGS,**非有理**,対称な単位系であり,ある意味で MKSA 単位系の対局にあると 言ってもよい。この結果, $\{\lambda\} = 4\pi$, $\{\varepsilon_0\} = \{\mu_0\} = 1$ と簡単になるが,光速の式から $\{\gamma\} = c_c$ になる。

理論的に便利なので、物理の世界で多用された。

ヘビサイドローレンツ単位系(Heaviside-Lorentz units)(hl) ヘビサイド(Heaviside)が 提唱した CGS, 有理, 対称な単位系である。以後,本書では,単にヘビサイド単位系 (Heaviside units)と略す。 $\{\lambda\} = 1, \{\varepsilon_0\} = \{\mu_0\} = 1, \{\gamma\} = c_c$ の理想的な単位系で ある。

ただし、ここで紹介した代表的な他の単位系では $\{\lambda\mu_0\}$ および $\{\varepsilon_0/\lambda\}$ には必ず 4π が入っているのに対し、この単位系では $\{\lambda\mu_0\} = \{\lambda/\varepsilon_0\} = 1$ となるため、他の単位系との換算の際 $\sqrt{4\pi}$ がたくさん入ることになり、この提案は採用されなかった。何故そうなるかについては後述の「単位の換算」の節を参考にして欲しい。

しかし理論的には美しく、特に相対性理論などで多用されている。

MKSA 単位系(MKSA units)(なし) 工業が発展するにつれ、それまでの基本であった CGS 単位系から、実用的な世界のサイズにあったより大きな量である m, kg, s を単 位を基本とする MKS 単位系(MKS units)への移行が起こった。これに合わせ、電 磁気の単位系の標準も MKS 単位系へ変更する提案が、ジオルジ(Giorgi)によってな され、MKSA 単位系(MKSA units)として整備された。MKS、有理、非対称な単

単位系	電磁	静電	Gauss	Heaviside	MKSA	単位
接頭語	ab	stat	\mathbf{gs}	hl	無印	x は左のいずれか
CGS/MKS	CGS	CGS	CGS	CGS	MKS	
$\{\lambda\}$ (非有理: 4π)	4π	4π	4π	1	1	$_{\mathrm{x}}[\lambda]$
$\{\gamma\}$ (対称: $\{c\}$)	1	1	$c_{ m c}$	$c_{ m c}$	1	$_{\rm x}C/_{\rm x}A_{\rm x}s$
磁気定数 $\{\mu_0\}$	1	$1/c_{\rm c}^2$	1	1	$4\pi/10^7$	$_{x}Wb/_{x}[\lambda]_{x}A_{x}m$
電気定数 $\{\varepsilon_0\}$	$1/c_{\rm c}^2$	1	1	1	$10^7/4\pi c_{\rm m}^2$	$_{x}[\lambda]_{x}C/_{x}V_{x}m$
$\{\lambda\mu_0\}$	4π	$4\pi/c_{\mathrm{c}}^2$	4π	1	$4\pi/10^7$	$_{\rm x}{\rm Wb}/_{\rm x}{\rm A}_{\rm x}{\rm m}$
$\{\varepsilon_0/\lambda\}$	$1/4\pi c_{\rm c}^2$	$1/4\pi$	$1/4\pi$	1	$10^7/4\pi c_{\mathrm{m}}^2$	$_{\rm x}{\rm C}/_{\rm x}{\rm V}_{\rm x}{\rm m}$

表 C.3 各単位系の特徴と定数の値 単位欄の x には ab や stat など,各単位系の接頭語が入る。

位系である。したがって $\{\lambda\} = 1, \{\gamma\} = 1$ ではあるが,従来の単位量との整合性を考慮し, 4π を電気定数 $\{\varepsilon_0\} = 10^7/4\pi c_m^2$ や磁気定数 $\{\mu_0\} = 4\pi/10^7$ に含めるようにした。 c_m は以後 MKS 単位系での光速値で約 3 · 10⁸ を意味することとする。また 10⁷ は CGS 単位系と MKS 単位系の大きな比を吸収するためである。

どちらかというと磁気定数 μ_0 の値を簡単にした電磁単位系に近いものとしたため、電 磁単位系から培ってきた過去の単位量との整合性の良さから、戦後、多少の変更の上、 国際標準単位系(International Standard units)として採用されるにいたった。

なお,この系の単位量は,CGS 電磁単位系の10 のべき乗とした**実用単位系**(practical unit)の概念を引き継いでいる。単位電圧を電池の電圧程度(10⁸ abV)となるように 定められている。

MKSP 単位系(MKSP units)(略) 日本の物理学者が中心になって提案された, MKS, **有理**, **対称**な単位系であり, ヘビサイド単位系の MKS 版である。 $\{\lambda\} = 1, \{\varepsilon_0\} = \{\mu_0\} = 1, \{\gamma\} = c_m$ の理想的な単位系であるが, ヘビサイド単位系と同様に $\sqrt{4\pi}$ が たくさん入るため, なかなか普及しないため, ここでの紹介に留める。

上記の観点から、主な単位系を分類すると、**表** C.3 のようになる。なお、 $\lambda \mu_0$ 、 ε_0/λ の値 も併記する。また、これら定数の単位については次節以後で説明する。

C.6 単位系における単位の名称

電磁気学の単位系は著名な物だけでも数種類存在している。そのうちの一つである MKSA 単位系でも、電流 I の単位の A(Ampere)、磁束 Φ の単位 Wb(Weber)、電荷 Q の単位 C (Coulomb)、電圧 ϕ の単位 V(Volt)の 4 つを基本単位系とし、その積や商である組み立て 単位系も存在する。これにいくつかの単位系の数を考慮すると驚くほどの単位が存在すること になる。幸いにして、単位として固有の名称が整備されている単位系は比較的少なく、MKSA 単位系以外ではガウス単位系ぐらいであり、e 型電流 Bi (Biot)、磁束 Mx (Maxwell)、電荷 Fr (Franklin)、電圧 statV (static V で厳密には statV であるが、以下スクリプト体もしくは 立体で表現する)などの名称を用いている。電磁単位系 CGS-emu ではかってすべての単位を emu という単一名称を使っていたが、非常に混乱するため、現在は MKSA 単位系の名称の前 に ab (absolute の略)を付けている。同様に静電単位系 CGS-esu は esu という単一名称だっ たが、現在は前に stat (electro-static の略)を付けている。それ以外の単位、例えばヘビサイ ド単位系については、無名である。

このため,きわめて間違いが発生しやすいので,本書では,すべての単位系の単位名称を区 別することにする。MKSA 単位系の単位の前に単位系に固有なサフィクスを付け,例えば単 位系の名称が x の場合, _xC などと記載した。本書の読者は基本的に MKSA 単位系に馴れて いるため,この方が便利であろう。

電磁単位系には ab, 静電単位系には stat, ガウス単位系には gs, ヘビサイドローレンツ 単位系には hl なる用語を前置する。MKSA 単位系には何も付けない。例えば電荷を表わす MKSA 単位系の C に対し, 他の単位系では, abC, statC, gsC, hlC, xC などとする (これら の記法は一部本書限り)。実は接頭語 ab や stat についてはスクリプト体ではなく, 立体であ り, abC, statC などであるが,本稿では単位系の種類を示すためにスクリプト体としたので 注意してほしい。またガウス単位系での特別な単位名については,まとめの表で注記すること とする。

「4 つの定数 λ, γ, μ₀, ε₀ は,本章最初の節で示した重力加速度 g のようなもので,単位 系により数値は変るが量としては変化しない定数である」ことに着目してほしい。定数とはい え,単位系によって値が変る量であるので,これらはいずれも「数値」に加え「単位」を有す るべきである。

まず有理化係数 λ であるが,多くの書でその単位は無次元としている。しかし,無次元だか らといって,単位系により数値の変る定数である。こうした場合に何らかの単位を付けていな いと,単位系の換算を単位の次元だけをみて行おうという場合に,著しく混乱を生じるので何 らかの単位を付けることにする。残念なことに MKSA 単位系では { λ }=1 のため, λ には単 位が与えられていない。そこで [λ] という単位名を付すこととする。本来は λ の大文字 Λ に したかったのだが, Λ と文字の見掛けが近く,混乱しそうなので [λ] のままにした。

例えばガウス単位系では $\lambda = 4\pi_{gs}[\lambda]$ となる。また MKSA 単位系では $\lambda = 1[\lambda]$ となる。 これにより、例えば $\lambda = 4\pi_{gs}[\lambda] = 1[\lambda]$ と置いて、二つの単位系の間の単位の関係を得るこ とが可能となる。

次に対称係数 γ であるが、この単位名は $[\gamma]$ とする。 γ は非対称系では無次元の1であり、 対称系では光速であるので、例えばガウス単位系では $c_{\rm c}$ cm/s、MKSA 系では無次元の1 で ある。しかし単位系により異なる単位とすると、例えば連続の式から A=C/m(誤り)のよう
な変な結論が導出されたりするので,あくまでも単位を持つものとして議論し,単位の換算率 が確定してから最後に,無次元と見なしたり,速さの単位と見なしたりするほうが混乱が少な い。これにより例えばガウス単位系と MKSA 単位系では $\gamma = c_{c gs}[\gamma] = 1[\gamma]$ などとなる。

以下,しばらく単位はすべて一般単位系のものとするので,「単位の換算」の節までは単位 系を示す接頭語は省略する。

C.7 基本単位系

前節で電磁気の各単位系における 4 つの定数 λ , μ_0 , ε_0 , γ の量について述べたが, ほとん どの場合, $\lambda\mu_0$, ε_0/λ がセットで現われるため, これらを基本定数と考えれば, λ のことは忘 れてもよい。さらに, 光速との関係式 (C.16) を利用して $\gamma = c\sqrt{\mu_0\varepsilon_0} = c\sqrt{(\lambda\mu_0)(\varepsilon_0/\lambda)}$ で 与えられるので, 自由度は 2 となる。つまり $\lambda\mu_0$ と ε_0/λ は自由に選択できることになる。さ らに, いずれの単位系でも γ は 1 または {c} に決定されるため, 対称/非対称を選択すれば, さらに自由度は減り 1 となる。

多くの単位系で、電流、磁束、電荷、電圧の単位を**基本単位**(base unit)として使う。これ らの単位は MKSA 単位系では電流 A, Wb, C, V である。しかし、4 個というのはあまりに 多い。そこで、本節ではこれらの独立性を調べる。

C.7.1 磁気系の単位

それでは,力の量方程式を利用して,単位系の構成の仕方について学ぼう。まず磁気系の 単位から調べていこう。磁気系の単位はビオ・サバールの法則 (C.11) や平行二線間の力の式 (C.12) から,決定していく。これらの式は,量方程式なので,数値の関係を示すのみでなく, 単位の関係も示している。しばらく式 (C.11) を使って話を進めるのでそれを再掲する。

$$F = i\Delta r' \times B$$
 $B = \frac{\lambda \mu_0}{4\pi} \frac{(I\Delta r) \times r}{r^3}$ $(I\Delta r \ \mathcal{O}$ 作る B) (再掲) (C.22)

まず電流と磁場の単位を次のように命名する。

$$[I] = A$$
 $[B] = Wb/m2$

接頭語が省略されているので,CGS 単位系では m は cm と読み換えることになる。磁場が一 つの基本単位でなく Wb(磁束の単位)を m² で除した組立単位になっているが,この定義が 便利なことはこの直後に示す。

(C.22) を単位だけで書くと、次の式が得られる(Nは CGS 単位系では dyn とする)。

N=A Wb/m
$$Wb/m^2 = [\lambda \mu_0] A/m$$

左式より, N m=J を利用して, 次式が得られる (J は CGS 単位系では erg)。

このようにどの単位系でも「電流単位 × 磁束単位=エネルギー単位」が成立する。つまり、磁 束単位は電流単位から誘導できる単位である。磁場を組立単位(基礎単位 Wb と m の組み合 せ)のままにしたのは、これが理由である。

続いて,右式より [λμ0] を求めることができる。

$$[\lambda \mu_0] = Wb/Am \quad (= H/m) \tag{C.24}$$

最後の等号は Wb/A を H(ヘンリー)という組立単位で表現したものである。H については 後に説明する。式 (C.23) および (C.24) の辺々の商および積から A および Wb を [λμ₀] の関 数として求めることができる。

$$A = \sqrt{J/m} / \sqrt{[\lambda \mu_0]} \qquad Wb = \sqrt{[\lambda \mu_0]} \sqrt{Jm} \qquad (C.25)$$

逆に [λμ₀] を基本単位で表わすには, (C.25) を用いて,

$$[\lambda \mu_0] = (J/m)/A^2 = Wb^2/(Jm) = Wb/Am$$
 (C.26)

なお、三つ目の等号は両式の比から得られるが、既に既出である。

C.7.2 電気系の単位

続いて電気系の単位について述べよう。今度は,クーロンの法則の式 (C.10) から,すべて を同様な手順で決定していくので,この式を再掲する。

$$F = q E$$
 $E = \frac{\lambda}{4\pi\varepsilon_0} \frac{Q r}{r^3}$ (Q の作る E) (再掲) (C.27)

まず電荷と電場の単位を次のように命名する。

$$[Q] = C$$
 $[E] = V/m$

電場の単位が V(電位の単位)を m(CGS 単位系では cm)で除した組立単位になっている が,この定義が便利なことは直後に示される。

(C.27) を単位だけで書くと、次の式が得られる。

N=C V/m
$$V/m = C/[\varepsilon_0/\lambda] m^2$$

左式より、N m=J を利用して、次式が得られる。

このようにどの単位系でも「電荷単位×電圧単位=エネルギー単位」が成立する。つまり、電 圧単位も電荷単位から誘導できる単位である。電場を組立単位のままにしたのは、これが理由 である。

続いて、右式より $[\varepsilon_0/\lambda]$ を求めることができる。

$$[\varepsilon_0/\lambda] = C/Vm (= F/m) \tag{C.29}$$

最後の等号は C/V を F(ファラッド)という組立単位で表現したものである。F については 後に説明する。式 (C.28) および (C.29) の辺々の商および積から C および V を [ε₀/λ] の関 数として求めることができる。

$$C = \sqrt{[\varepsilon_0/\lambda]} \sqrt{Jm} \qquad V = \sqrt{J/m} / \sqrt{[\varepsilon_0/\lambda]} \qquad (C.30)$$

逆に $[\varepsilon_0/\lambda]$ を基本単位で表わすには, (C.30)を用いて,

$$[\varepsilon_0/\lambda] = C^2/(Jm) = (J/m)/V^2 = C/Vm$$
 (C.31)

なお、三つ目の等号は両式の比から得られるが、既に既出である。

C.7.3 対称単位

本節のここまでの話で γ は全く関わってきていない。実際,次節で示す単位の変換でも γ は無関係である。しかし、 γ と単位との関係にも触れておきたい。(C.16)の関係を γ を求める形で再掲しよう。

$$\gamma = \sqrt{(\lambda \mu_0)(\varepsilon_0/\lambda)} \ c$$

 $\mu_0 \varepsilon_0$ の部分に λ が入るように若干変形している。

$$[\gamma] = \sqrt{[\lambda\mu_0][\varepsilon_0/\lambda]} c$$

つまり、 $[\gamma]$ も $[\lambda\mu_0]$ と $[\varepsilon_0/\lambda]$ が与えられれば決定できる。

 $[\gamma]$ の単位について述べておこう。式 (C.26) および (C.31) より, $[\lambda\mu_0]$ と $[\varepsilon_0/\lambda]$ にはそれぞれ何通りかの組み合せがある。私個人は (C.19) との関連が深い次式の単位が好きである。

$$[\gamma] = \sqrt{(J/A^2m) (C^2/Jm) m/s} = C/As$$

C.7.4 次元解析

本節の作業でわかったかと思われるが、「量方程式から単位だけの関係式を抜き出し利用す れば単位間の関係がわかる。」これを次元解析(dimension analysis)ともいう。また、「数値 だけの関係式を抜き出す、もしくは量方程式全体を使えば、数的関係が得られる。」特に、力 学の世界ではすべての単位が長さ L、質量 M、時間 T から構成されているので、電磁気の単 位ではいくつの追加単位が必要であるかの議論が重要である。A、Wb、C、V の 4 個が決ま れば、すべての電磁気の基本単位は決定できるのであるが、これらは (C.25) および (C.30) の 式から、[$\lambda\mu_0$] および [ϵ_0/λ] より決定できる。このことから力学系の MKS に加え、2 個の 自由度を与えれば電磁気の基本単位はすべて決定できることになる。しばしば、MKSA と言 われているのは、MKS に加え、もう一つの自由度を A で与えれば、電磁気の単位はすべて決 定できるという意味であるが、厳密にはもう一つの自由度が必要である。

実は、非対称の単位系だけを議論すれば、 $\{\gamma\} = 1$ であるので、 $[\varepsilon_0/\lambda]$ は $[\lambda\mu_0]$ より一意 に決まる。その場合、自由度は1減らすことができるので、MKSA で十分な自由度を得てい ることになる。同様に対称の単位系だけに議論を限れば、 $\{\gamma\} = c_c$ なので、その範囲で自由 度を1減らすことができ、その場合も MKSA で十分な自由度を得たことになる。しかし、本 書のように、非対称系も対称系も同時に扱う場合には、 $[\lambda\mu_0]$ および $[\varepsilon_0/\lambda]$ 、もしくは $[\lambda\mu_0]$ および $[\gamma]$ の二つの自由度が必要である。あるいは基本単位で表現すれば、A および C の二 つの自由度が必要となる。

C.8 単位の換算

以後,再び一般単位系の数値および単位には,接尾語および接頭語「x」を付ける。

二つの単位系の間の単位の換算の仕方について統一的に扱おう。

 $\lambda\mu_0$ を表現する (C.26) のうち A² を含む表現を利用しよう。 $\lambda\mu_0$ そのものは異なる単位系 でも維持される量である。変化するのは「数値」であり,それに対応して「単位」が変化する のである。ここで, $\lambda\mu_0$ をxのついていない系とついた系で記述する。

$$\lambda \mu_0 = \{\lambda \mu_0\} [\lambda \mu_0] = \{\lambda \mu_0\} (J/m)/A^2$$
$$= \{\lambda \mu_0\}_x [\lambda \mu_0] = \{\lambda \mu_0\}_x (_x J/_x m)/_x A^2$$

これから_xA と A の換算式が得られる。同様に Wb² を含む式から Wb の換算式が得られる。 さらに (C.31) を利用し, C および V の換算式が得られる。

$$\lambda \mu_{0} = \{\lambda \mu_{0}\} (J/m) / A^{2} = \{\lambda \mu_{0}\}_{x} (_{x}J/_{x}m) /_{x}A^{2}$$
$$\lambda \mu_{0} = \{\lambda \mu_{0}\} (1/Jm) Wb^{2} = \{\lambda \mu_{0}\}_{x} (1/J_{x}m)_{x}Wb^{2}$$
$$\varepsilon_{0}/\lambda = \{\varepsilon_{0}/\lambda\} (1/Jm) C^{2} = \{\varepsilon_{0}/\lambda\}_{x} (1/_{x}J_{x}m)_{x}C^{2}$$
$$\varepsilon_{0}/\lambda = \{\varepsilon_{0}/\lambda\} (J/m) / V^{2} = \{\varepsilon_{0}/\lambda\}_{x} (_{x}J/_{x}m) /_{x}V^{2}$$

これらの右 2 項の商をとれば, _xA と A の関係式が得られる。同様にして以下の関係式が得られる。

$$1_{x}A = \sqrt{\frac{\{\lambda\mu_{0}\}_{x}}{\{\lambda\mu_{0}\}}} \sqrt{\frac{xJ/xm}{J/m}} A$$
$$1_{x}Wb = \sqrt{\frac{\{\lambda\mu_{0}\}}{\{\lambda\mu_{0}\}_{x}}} \sqrt{\frac{xJ_{x}m}{Jm}} Wb$$
$$1_{x}C = \sqrt{\frac{\{\varepsilon_{0}/\lambda\}_{x}}{\{\varepsilon_{0}/\lambda\}_{x}}} \sqrt{\frac{xJ_{x}m}{Jm}} C$$
$$1_{x}V = \sqrt{\frac{\{\varepsilon_{0}/\lambda\}_{x}}{\{\varepsilon_{0}/\lambda\}_{x}}} \sqrt{\frac{xJ/xm}{J/m}} V$$

これだけで、任意の単位系の基本単位量が MKSA 単位系で表すとどれ程になるのかが、即座 に計算できることになる。 $\lambda\mu_0$ 、 λ/ε_0 のみが関係し、 γ は換算に直接関係ないことがわかる。

CGS 系と MKS 単位系の間では,換算式の2番目の平方根も効いてくる。例えば $1_{\rm mks}$ J = 1 kg m²/s² = 10³ g 10² cm/s² = 10⁷ erg なので, $\sqrt{(_x J_x m)/(J/m)} = \sqrt{10^{-5}}$ およ び $\sqrt{(_x J_x m)/(Jm)} = \sqrt{10^{-9}}$ が成立する。

例えば、ガウス単位系との換算則を求めてみよう。**表 C.3**より MKSA 単位系では $\{\lambda\mu_0\} = 4\pi/10^7$ 、 $\{\varepsilon_0/\lambda\} = 10^7/4\pi c_m^2$ である。一方、ガウス単位系では $\{\lambda\mu_0\}_{gs} = 4\pi$ 、 $\{\varepsilon_0/\lambda\}_{gs} = 1/4\pi$ である。これらを上の各式に代入し 1 erg = $1/10^7$ J、1 cm = 1/100 m に留意すると 1_{gs} A=10 A^{*2}、1 $_{gs}$ Wb = $1/10^8$ Wb、1 $_{gs}$ C = $1/10c_m$ C、1 $_{gs}$ V = $(c_m/10^6)$ V ≈ 300 V が得られる。

もちろん,上述の議論は,片方を MKSA 単位系に限る必要はない。任意の二つの単位系間 の換算で,同じ手法が利用できる。すべての単位系間の換算の結果を表 C.4 に示す。ただし, すべての単位が電磁単位系をかなめに構成されてきたため,その数値を1になるようにするほ うが,表が簡潔になるので,そのようにした。ドルの換算レートをドル/円でなく,円/ドルで 表すようなものである。

この表の数値は基本的に電磁単位系なので、CGS 単位系であることに留意して基本単位の 数値を見てみよう。電流と磁束の積、電荷と電圧の積の値は、MKSA 単位系では (1/10⁷) J,

 $^{^{*2}}$ これは I の単位であり,ガウス単位系の元々の電流 $I^e=I/c$ の単位ではない。 I^e の単位は $_{
m gs}{
m A}'$ とする

単位系	電磁	静電	Gauss	Heaviside	MKSA	単位
接頭語	ab	stat	\mathbf{gs}	hl	無印	x は左のいずれか
$\lambda \mu_0$	4π	$4\pi/c_{\rm c}^2$	4π	1	$4\pi/10^7$	$_{\rm x}{\rm Wb}/_{\rm x}{\rm A}$ $_{\rm x}{\rm m}$
ε_0/λ	$1/4\pic_{\rm c}^2$	$1/4\pi$	$1/4\pi$	1	$10^7/4\pic_{ m m}^2$	$_{\rm x}{\rm C}/_{\rm x}{\rm V}$ $_{\rm x}{\rm m}$
電流 I	1	$c_{ m c}$	1*	$\sqrt{4\pi}$	10	хA
磁束 Φ	1	$1/c_{\rm c}$	1	$1/\sqrt{4\pi}$	$1/10^{8}$	$_{\rm x}{\rm Wb}$
電荷 Q	1	$c_{ m c}$	$c_{ m c}$	$\sqrt{4\pi} c_{\rm c}$	10	$_{\rm x}{\rm C}$
電位 ϕ	1	$1/c_{\rm c}$	$1/c_{\rm c}$	$1/\sqrt{4\pi} c_{\rm c}$	$1/10^{8}$	xV

表 C.4 定数と基本単位の換算表

 $c_{\rm c}, c_{\rm m}$ は CGS および MKS 単位系における光速で、およそ $3 \cdot 10^{10}$ および $3 \cdot 10^8$ 。

* これは I に対する換算値であり、 $I^e = c I$ に対するものではない。

CGS 単位系では 1 erg となっている。

また,電荷/(電流時間),磁束/(電圧時間)の値は MKSA 単位系,静電単位系,電磁単位系 でいずれも 1,ガウス単位系,ローレンツ単位系ではいずれも *c*c である。このことさえ知って いれば,電流の換算値というごく少ない知識から,すべての基本単位の換算値を誘導できる。

実は、どんな単位系でも、力学的な長さ、質量、時間の単位以外に、電気的な単位を最低一 つ導入することにより、すべての電磁気学の単位を決めることができるのである(厳密には γ も必要である)。MKSA 単位系の A とは、MKS 単位系に電流単位 A (それと 1 の値を持つ γ)を付け加えることにより、すべての電磁気学の単位系を構成できることを示している。

MKSA 単位系は有理であるが非対称である。そこで MKS 単位系の有理かつ 対称の単位系を作りたくなる。実際, MKSP*³単位系というのが提案されてい る。これは { λ } = 1, { γ } = c, { ε_0 } = { μ_0 } = 1 という MKS 版ヘビサイド 単位系である。1_{mksp}A = $\sqrt{10^7/4\pi}$ A, 1_{mksp}Wb = $\sqrt{4\pi/10^7}$ Wb, 1_{mksp}C = $(\sqrt{10^7/4\pi/c_m})$ A, 1_{mksp}V = $\sqrt{4\pi/10^7}c_m$ V となる。ヘビサイド単位系と同様に,換 算係数に $\sqrt{4\pi}$ を含むため,今迄使ってきた MKSA 単位系との換算が困難ということで実用 的にはまったく使われていない。例えば、今迄の 100 V は今後、0.265_{mksp}V と読み換えると 言われたら、かなりの混乱が生じることは明かであろう。1000 mb を 100 kPa と読み換える のとは違うのである。もっとも我々の世代は小学校の頃に尺貫法から MKS 系への変換係数を 覚えさせられた。*⁴今でも時代小説を読んでも、1 貫は 3.75 kg とか 6 尺は 180 cm とか直ぐに

 $^{^{*3}}$ P lt physics.

^{*&}lt;sup>4</sup> 当時の日本政府はよくぞこんな改革ができたものである。事実,米国は今もってヤードポンド法から脱出でき ていない。

頭に浮ぶということは,単位に関するかなり複雑な改革でも強要できるということかも知れ ない。

別の例として、光速、プランク定数(厳密には $h/2\pi$)、重力定数(厳密には $8\pi G$)、 ε_0 、 μ_0 、 λ 、をすべて 1 とする**自然単位系** (natural units) について作業をしてみよう。この単位の場 合、長さ、質量、時間の単位が MKS 単位系とも CGS 単位系ともすべて異なる。これは力学単 位系の変換であるが、変換のコツは単位だけ、数値だけで考えずに量で考えることである。同 じ量を MKS 単位系で表現したらどうなるか、自然単位系で表現したらどうなるかを考えれば 変換係数は直ぐに求まる。この単位の長さ、質量、時間の単位を num, nukg, nus としよう。こ こで、定数の値はすべて MKS 単位系のものとする。 $\{c\} = c_{\rm m} = 3 \cdot 10^8$ 、 $\{h\} = 6.6 \cdot 10^{-34}$ 、 $\{G\} = 6.7 \cdot 10^{-11}$ である。すると以下の関係が成立する。

$$c = \{c\} \text{ m/s} = 1_{\text{nu}}\text{m/nus}$$
$$\hbar = \{h\}/2\pi \text{ kg m}^2/\text{s} = 1_{\text{nu}}\text{kg}_{\text{nu}}\text{m}^2/\text{nus}$$
$$8\pi G = 8\pi \{G\} \text{ m}^3/\text{kg s}^2 = 1_{\text{nu}}\text{m}^3/\text{nukg}_{\text{nu}}\text{s}^2$$

この結果、力学系単位に関して、次の換算則が得られる。

$$1_{\rm nu} m = \sqrt{4hG/c^3} m = (8.1/10^{35}) m$$

 $1_{\rm nu} kg = \sqrt{hc/8\pi G} kg = (1.08/10^8) kg$
 $1_{\rm nu} s = \sqrt{4hG/c^5} s = (2.7/10^{43}) s$

いずれももの凄く小さい単位なので実用的には役に立たない。

自然単位系の電磁気系の単位については、 $\{\lambda\}$, $\{\mu_0\}$, $\{\varepsilon_0\}$ に加え光速値まで 1 なので、 $\{\gamma\}$ も 1 になることになる。これ以後の換算については、読者の課題としたい。

C.9 組み立て単位

基本単位を組み合わせて作成される**組み立て単位**(derived unit)については、もう少し多 くの式を必要とする。まず、物質が絡む場合には、次のように物質による電荷や電流以外に、 自由に置かれた電荷や電流 ρ_f 、 J_f と物質内の源とを分離する必要がある。

$$\rho = \rho_f - \operatorname{div} \boldsymbol{P}$$
$$\boldsymbol{J} = \boldsymbol{J}_f + \operatorname{rot} \boldsymbol{M} + \frac{1}{\gamma} \frac{\partial \boldsymbol{P}}{\partial t}$$
(C.32)

これらより電束密度と磁場強度のベクトル場を導入する。電束密度は $\varepsilon_0 E$ と同じ単位,磁場 強度は B/μ_0 と同じ単位とする。

単位系	電磁	静電	Gauss	Heaviside	MKSA	単位
接頭語	ab	stat	gs^*	hl	無印	x は左のいずれか
λ (非有理: 4 π)	4π	4π	4π	1	1	$_{\mathrm{x}}[\lambda]$
磁気定数 μ_0	1	$1/c_{\rm c}^2$	1	1	$4\pi/10^{7}$	$_{\rm x} {\rm H}/_{\rm x} [\lambda] ~_{\rm x} {\rm m}$
$\lambda \mu_0$	4π	$4\pi/c_{\rm c}^2$	4π	1	$4\pi/10^{7}$	$_{\rm x}{\rm Wb}/_{\rm x}{\rm A}$ $_{\rm x}{\rm m}$
電流 I	1	$c_{ m c}$	1^{\dagger}	$\sqrt{4\pi}$	10	xA
磁束 Φ	1	$1/c_{\rm c}$	1	$1/\sqrt{4\pi}$	$1/10^{8}$	$_{\rm x}{\rm Wb}$
磁束密度 B	1	$1/c_{\rm c}$	1	$1/\sqrt{4\pi}$	$1/10^{4}$	$_{\rm x}{\rm Wb}/_{\rm x}{\rm m}^2$
ベクトルポテン	1	1/c	1	$1/\sqrt{4\pi}$	1/106	Wb/m
シャル А	L	$1/C_{\rm C}$	T	1/ / 4/	1/10	x W D/ xIII
磁場強度 H	1	$C_{\rm C}$	1	$1/\sqrt{4\pi}$	$10^3/4\pi$	$_{x}[\lambda]_{x}A/_{x}m$
磁化 M	1	$c_{ m c}$	1	$\sqrt{4\pi}$	10^{3}	$_{\rm x}A/_{\rm x}m$
誘導 L	1	$1/c_{ m c}^2$	1	$1/4\pi$	$1/10^{9}$	$_{\rm x}H=_{\rm x}Wb/_{\rm x}A$
透磁率 μ	1	$1/c_{\rm c}^2$	1	1	$4\pi/10^7$	$_{x}H/_{x}[\lambda]_{x}m$
磁荷 m	1	$1/c_{\rm c}$	1	$\sqrt{4\pi}$	$4\pi/10^{8}$	$_{\rm x}{\rm Wb}/_{\rm x}[\lambda]$
磁位 ϕ_{m} §	1	$C_{\rm C}$	1	$1/\sqrt{4\pi}$	$10/4\pi$	$_{x}[\lambda]_{x}A$
磁気分極 $m{P}_{ m m}$	1	$1/c_{\rm c}$	1	$\sqrt{4\pi}$	$4\pi/10^{4}$	$_{\rm x}{\rm Wb}/_{\rm x}[\lambda]_{\rm x}{\rm m}^2$

表 C.5 磁気系組み立て単位の換算表

* ガウス単位系では

磁束 gsWb =_{ab}Wb=Mx (Maxwell), 磁束密度 gsWb/cm² = _{ab}Wb/cm²=G (Gauss), 磁場強度 gs[λ] gsA/cm =_{ab}[λ] abA/cm=Oe (Oersted), 磁位 gs[λ] gsA =_{ab}[λ] abA=Gi (Gilbert), 磁気分極 gsWb/gs[λ] =_{ab}Wb/ab[λ]=G (Gauss)。 [†] ガウス単位系では I (abA) の代わりに I^e = cI (statA 非推奨) を利用 (表 C.7 参照)。

[‡] MKSA 単位系では磁束密度は Wb/m²=T (Tesla)。

§磁位とは、磁場強度 H を距離積分したもの。

$$D = \varepsilon_0 E + \lambda P$$
$$H = \frac{B}{\mu_0} - \lambda M$$
(C.33)

これらを用いると,式(C.13)と式(C.15)は次にようになる。

div
$$\boldsymbol{D} = \lambda \rho_f$$

rot $\boldsymbol{H} = \lambda \boldsymbol{J}_f + \frac{1}{\gamma} \frac{\partial \boldsymbol{D}}{\partial t}$

単位系	電磁	静電	Gauss	Heaviside	MKSA	単位
接頭語	ab	stat	gs^{*}	hl	無印	x は左のいずれか
λ (非有理: 4π)	4π	4π	4π	1	1	$_{\mathrm{x}}[\lambda]$
電気定数 ε_0	$1/c_{\rm c}^2$	1	1	1	$10^7/4\pi c_{\rm m}^2$	$_{x}[\lambda]_{x}F/_{x}m$
$arepsilon_0/\lambda$	$1/4\pi c_{\rm c}^2$	$1/4\pi$	$1/4\pi$	1	$10^7/4\pic_{ m m}^2$	$_{\rm x}C/_{\rm x}V$ $_{\rm x}m$
電荷 Q	1	$c_{\rm c}$	$c_{ m c}$	$\sqrt{4\pi}c_{\rm c}$	10	$_{\rm x}{\rm C}$
電位 ϕ	1	$1/c_{\rm c}$	$1/c_{ m c}$	$1/\sqrt{4\pi}c_{\rm c}$	$1/10^{8}$	V_x
電場強度 E	1	$1/c_{\rm c}$	$1/c_{ m c}$	$1/\sqrt{4\pi}c_{\rm c}$	$1/10^{6}$	$_{\rm x}V/_{\rm x}m$
電束密度 D	1	$c_{\rm c}$	$c_{ m c}$	$c_{\rm c}/\sqrt{4\pi}$	$10^5/4\pi$	$_{\rm x}[\lambda]_{\rm x}{\rm C}/_{\rm x}{\rm m}^2$
電気分極 P	1	$c_{\rm c}$	$c_{ m c}$	$\sqrt{4\pi}c_{\rm c}$	10^{5}	$_{\rm x}{\rm C}/_{\rm x}{\rm m}^2$
容量 C	1	$c_{\rm c}^2$	$c_{\rm c}^2$	$4\pi c_{\rm c}^2$	10^{9}	$_{\rm x}F=_{\rm x}C/_{\rm x}V$
誘電率ε	1	$c_{\rm c}^2$	$c_{\rm c}^2$	$c_{ m c}^2$	$(1/4\pi)10^{11}$	$_{\rm x}[\lambda]_{\rm x} F/_{\rm x} m$

表 C.6 電気系組み立て単位の換算表

* ガウス単位系では 電荷 gsC=statC=Fr (Franklin), 電位 gsV=statV。

磁化(magnetization) M については、コメントが必要である。現在は電流が磁場を作る という E-B 対応という体系が主流になっているが、かっては磁荷が磁場を作るという E-H対応という体系が主流であった。このため、物質の作る磁場の源も磁荷に立脚した磁気分極 (magnetic polarization) P_m と呼ばれるものが使われた。

現在の磁化は **H** に近い概念であるが(厳密には λ **H** の単位),古い CGS 系の単位はすべ て,**B** に近い概念である(厳密には λ **B** の単位)。MKSA 単位系でも古い書籍では,こう なっている。同じ磁場源に二つの概念があるのである。 $P_m = \mu_0 M$ なので,式 (C.32) と式 (C.33) は次のようになる。

$$J = J_f + \frac{1}{\mu_0} \operatorname{rot} \boldsymbol{P}_m + \frac{1}{\gamma} \frac{\partial \boldsymbol{P}}{\partial t}$$
$$\boldsymbol{B} = \mu_0 \boldsymbol{H} + \lambda \boldsymbol{P}_m$$

いくつかの重要な組み立て単位があるが,いずれも基本単位と力学単位の組み合わせであ り,それをわきまえれば,簡単に**表 C.5,表 C.6,表 C.7**が完成する。ここでも換算表では 電磁単位系の数値を1としている。

基本単位以外によく使われる量は、容量(キャパシタンス)、誘導(インダクタンス)、 抵抗、電力である。容量単位は $_{x}F = _{x}C/_{x}V$ 、誘導単位は $_{x}H = _{x}Wb/_{x}A$ 、抵抗単位は

単位系	電磁	静電	Gauss	Heaviside	MKSA	単位
接頭語	ab	stat	\mathbf{gs}	hl	無印	x は左のいずれか
電位 φ	1	$1/c_{\rm c}$	$1/c_{\rm c}$	$1/\sqrt{4\pi}c_{\rm c}$	$1/10^{8}$	xV
電流 I	1	$c_{\rm c}$	1	$\sqrt{4\pi}$	10	xA
抵抗 R	1	$1/c_{\rm c}^2$	$1/c_{\rm c}$	$1/4\pi c_{\rm c}$	$1/10^{9}$	$_{x}[\Omega]={_{x}V/}_{x}A$
電力 $P = \phi I$	1	1	$1/c_{ m c}$	$1/c_{ m c}$	$1/10^{7}$	$_{x}V_{x}A = _{x}J/_{x}s_{x}[\gamma]$
γ	1	1	$c_{ m c}$	$C_{\rm C}$	1	$_{\mathbf{x}}[\gamma] = _{\mathbf{x}} \mathbf{C} /_{\mathbf{x}} \mathbf{A}_{\mathbf{x}} \mathbf{s}$
電流 I ^e	1	$c_{ m c}$	$c_{\rm c}^{*}$	$\sqrt{4\pi}c_{\rm c}$	10	$_{\mathbf{x}}\mathbf{A}' =_{\mathbf{x}} [\gamma]_{\mathbf{x}}\mathbf{A} = _{\mathbf{x}}\mathbf{C}/_{\mathbf{x}}\mathbf{S}$
抵抗 R^e	1	$1/c_{ m c}^2$	$1/c_{\rm c}^2$	$1/4\pi c_{\mathrm{c}}^2$	$1/10^{9}$	$_{x}[\Omega']={_{x}V/_{x}A'}$
電力 $P^e = \phi I^e$	1	1	1	1	$1/10^{7}$	$_{\rm x}V_{\rm x}A' = _{\rm x}J/_{\rm x}s$

表 C.7 混合系組み立て単位の換算表

* ガウス単位系で使われている非対称な静電系電流 $I^e(=cI)$ で、 $_{gs}A' = _{stat}A = Bi$ (Bio)。

 $x[\Omega] = xV/xA$ である。容量単位と誘導単位を使うと,電気定数の単位は $x[\lambda]_xF/xm$,磁気 定数の単位は $xH/x[\lambda]_xm$ と記載することができる。

前述のように電力 *P* はポインティングベクトルの面積積分のことであり, (C.21) より, エ ネルギー密度 *u* を体積積分して得られるエネルギー *U* の時間変化を _x[γ] で除した次式で与 えられる。

$$P = -\frac{1}{\gamma} \frac{\partial U}{\partial t}$$

これより, $x[P] = xJ/xs x[\gamma] = xJ xA/xC = xV xA と 「電圧 × 電流」の単位を持つ。$

なお $_{x}W = _{x}J/_{x}s$ (厳密には $_{x}J/_{x}s_{x}[\gamma]$)の式は MKSA 単位系など非対称系では正しいが, 対称系では $_{x}J/_{x}s_{x}[\gamma]$ なので注意が必要である。

C.10 再び対称系について(γ 不要論)

本節はかなり趣味的であるが,対称(symmetrical)系の話を蒸し返したい。新しい単位系 を作成するための手順を学ぶという意味もあろう。

(C.13) から (C.14) のマクスウェル方程式を見ると、 γ は常に t とセットになって存在して いる。そこで $\gamma t \rightarrow t$ と置き換えるとマクスウェル方程式から γ を追い出すことができる。そ の結果は (C.13) から (C.14) のすべての式で $\gamma \rightarrow 1$ としたものと一致する。

一方,対称系という言葉の意味は,光速が1のような系であるということである。そこで単に $\gamma \rightarrow 1$ という単位上の制約だけでなく, xm と xs が $c_c = 1$ あるいは $c_m = 1$ になるように

選択する必要がある。

以上のような完全な対称系を用いると次のような利点がある。

- 対称システムを記述する際に必要だった γ が不要となる。
- このため γ の単位も不要となる。
- 対称システムと非対称システムを記載する量方程式が γ を含まないため、等しくなる。
- いずれのシステムでも _xC/_xA =_xs, _xWb/_xV =_xs が成立し、4 単位のうち 2 単位が他の2 単位から簡単に誘導できるようになる。
- 対称システムで電流、ポインティングベクトル、電力に対し二重に定義されていた次の 量が一致する。*I^e = I*、*S^e = S*、*P^e = P*。

ならば,例えばガウス単位系を若干修正すれば,これらの式を満す単位系が構成できるかと いうと,それほど簡単でもない。例えば CGS 単位系でいえば,長さは cm のままとし,時間 を十分に短かくする短時間単位系 stc (short-time CG) がある。また逆に時間は秒のまま,長 さを光速の到達距離とする長距離単位系 llc (long-length CG) がある。さらに,MKS 単位系 でいえば,長さは m のままとし,時間のみ替る stm (short-time MG) や時間は変更なく距離 だけ替る長距離単位系 llm (long-lenght MG) がある。

C.10.1 CGS 単位系に近い完全対称系

まず, CGS 単位系に近い対称系を創設してみよう。光速を1にするには CGS の一つを変 更するしかない。時間を短時間にするか,距離を長距離にするかして,光速の距離/時間が1 になるようにする。

CGS 単位系の s だけが非常に短いとした接頭語としては stc (short-time CGS) なる短時間 系を考慮しよう。 $\lambda\mu_0$ および ε_0/λ の決定であるが,共に 1 にしたい所であるが,他の単位と の換算の容易さも考慮し,次のように定めた。

$$\{\lambda\mu_0\}_{ab} = 4\pi \qquad \{\lambda\mu_0\}_{stc} = 4\pi$$
$$\{\varepsilon_0/\lambda\}_{ab} = 1/4\pi c_c^2 \qquad \{\varepsilon_0/\lambda\}_{stc} = 1/4\pi$$

作業開始前に私が予想していなかったのは,力学系の単位に大きな変更が必要なことであった。1_{stc}s = 1/*c*_cs なので,エネルギーの単位は次式で変換される。

$$1_{\rm ab} J = 1 \,{\rm g}\,{\rm cm}^2/{\rm s} = 1 \,{\rm g}\,{\rm cm}^2/c_{\rm c}\,{\rm stc} {\rm s} = (1/c_{\rm c})_{\rm stc} J$$

以下の関係を利用すると換算が速い。

$$1_{ab}J/_{ab}m = (1/c_c)_{stc}J/_{stc}m \qquad 1_{ab}J_{ab}m = (1/c_c)_{stc}J_{stc}m$$

単位系	電磁	Gauss	短時間対称	長時間対称	単位
接頭語	ab	\mathbf{gs}	stc	llc	
$\lambda \mu_0$	4π	4π	4π	4π	$_{\rm x}{\rm Wb}/_{\rm x}{\rm A}_{\rm x}{\rm m}$
ε_0/λ	$1/4\pi c_{\mathrm{c}}^2$	$1/4\pi$	$1/4\pi$	$1/4\pi$	$_{\rm x}C/_{\rm x}V$ $_{\rm x}m$
電流 I	1	1	$1/\sqrt{c_{\rm c}}$	$1/c_{ m c}$	xA
磁束 Φ	1	1	$1/\sqrt{c_{\rm c}}$	$1/c_{ m c}$	$_{\rm x}{\rm Wb}$
電荷 Q	1	$c_{ m c}$	$\sqrt{c_{ m c}}$	1	$_{\mathbf{x}}\mathbf{C}$
電位 ϕ	1	$1/c_{\rm c}$	$1/\sqrt{c_{\rm c}^3}$	$1/c_{\rm c}^2$	vV

表 C.8 完全対称系 (CGS に近い)の定数と基本単位の換算表

その結果、以下の換算値が得られる。

$$1_{ab}A = 1 \cdot \sqrt{1/c_{c}}_{stc}A = (1/\sqrt{c_{c}})_{stc}A$$
$$1_{ab}Wb = 1 \cdot \sqrt{1/c_{c}}_{stc}Wb = (1/\sqrt{c_{c}})_{stc}Wb$$
$$1_{ab}C = \sqrt{c_{c}^{2}} \cdot \sqrt{1/c_{c}}_{stc}C = \sqrt{c_{c}}_{stc}C$$
$$1_{ab}V = \sqrt{1/c_{c}^{2}}\sqrt{1/c_{c}}_{stc}V = (1/\sqrt{c_{c}}^{3})_{stc}V$$

次に CGS 単位系の cm だけが非常に長いとした接頭語としては llc (long-length CGS) なる長距離系を考慮しよう。 $\lambda\mu_0$ および ε_0/λ は stc 系と同様である。エネルギーについては以下のようになる。

 $1_{\rm ab}J = 1\,{\rm g\,cm^2/s} = (1/c_{\rm c})^2\,{\rm g\,_{llc}m/s} = (1/c_{\rm c}^2)_{\rm \,llc}J$

以下の関係を利用すると換算が速い。

$$1_{\rm ab} J/_{\rm ab} m = (1/c_{\rm c}^2)_{\rm stc} J/_{\rm stc} m$$
 $1_{\rm ab} J_{\rm ab} m = (1/c_{\rm c}^2)_{\rm stc} J_{\rm stc} m$

その結果、以下の換算値が得られる。

$$1_{ab}A = 1 \cdot \sqrt{1/c_{m}^{2}}_{llc}A = (1/c_{c})_{llc}A$$

$$1_{ab}Wb = 1 \cdot \sqrt{1/c_{c}^{2}}_{llc}Wb = (1/c_{c})_{llc}Wb$$

$$1_{ab}C = \sqrt{c_{c}^{2}} \cdot \sqrt{1/c_{c}^{2}}_{llc}C = 1_{llc}C$$

$$1_{ab}V = \sqrt{1/c_{c}^{2}}\sqrt{1/c_{c}^{2}}_{llc}V = (1/c_{c}^{2})_{llc}V$$

上記の二つの結果をまとめたものを**表 C.8** に示す。ガウス単位系との関係が深いことは予 測済みであるが、短時間対称系 stc では 1 ガウス単位系のすべての単位が 1/√c_c になってい る。同様に長距離対称系 llc では 1/c_c になっている。長時間対称系 llc では換算率には c_c の 冪乗しか入っていないので、十分使えそうである。

C.10.2 MKS 単位系に近い完全対称系

続いて MKS 単位系の s だけが非常に短いとした接頭語としては stm (short-time CGS) なる短時間系を考慮しよう。 $\lambda\mu_0$ および ε_0/λ の決定であるが,共に1にしたい所であるが,他の単位との換算の容易さも考慮し,次のように定めた。

$$\{\lambda \mu_0\}_{\rm ab} = 4\pi \qquad \{\lambda \mu_0\}_{\rm stc} = 4\pi \\ \{\varepsilon_0/\lambda\}_{\rm ab} = 1/4\pi c_{\rm c}^2 = 1/4\pi \, 10^4 \, c_{\rm m}^2 \qquad \{\varepsilon_0/\lambda\}_{\rm stc} = 1/4\pi$$

しかし,これらを使うと換算表に $\sqrt{10}$ や $\sqrt{c_{\rm m}}$ が残り,使いやすい単位とはならない。長距離 対称系 llm でも同様な結果が得られる。

このため、MKSA 単位系の定数の設定の仕方に習い、 $\lambda\mu_0$ と ε_0/λ の双方に $c_{\rm m}$ と 10 の奇 数乗を入れ、かつ両者の積が 1 になるような工夫をする。ちなみに、MKSA 単位系では n=3である。

$$\{\lambda\mu_0\}_{\rm ab} = 4\pi \qquad \{\lambda\mu_0\}_{\rm stc} = 4\pi c_{\rm m}/10^{2n+1} \\ \{\varepsilon_0/\lambda\}_{\rm ab} = 1/4\pi c_{\rm c}^2 = 1/4\pi 10^4 c_{\rm m}^2 \qquad \{\varepsilon_0/\lambda\}_{\rm stc} = 10^{2n+1}/4\pi c_{\rm m}$$

まず, MKS 単位系の s だけが非常に短いとした修正 stm (short-time CGS) なる短時間系を 考慮しよう。

力学系単位については $1_{stm}s = 1/c_m s$ なので、エネルギーの単位は次式で変換される。

$$1_{\rm ab}J = 1\,{\rm g\,cm^2/s} = 10^{-3}\,{\rm kg\,}(10^{-2})^2\,{\rm m^2/c_{m\,stm}s} = (1/10^7\,c_{\rm m})\,{\rm kg\,m^2/_{stm}s} \qquad ({\rm stm}J)$$

これより次式が得られる。

$$1_{ab}J/_{ab}m = (1/10^5 c_m)_{stm}J/_{stm}m$$
 $1_{ab}J_{ab}m = (1/10^9 c_m)_{stm}J_{stm}m$

これから、次の変換式が得られる。

$$1_{ab}A = \sqrt{10^{2n+1}/c_{m}} \sqrt{1/10^{5}c_{m}}_{stm}A = (10^{n-2}/c_{m})_{stm}A$$

$$1_{ab}Wb = \sqrt{c_{m}/10^{2n+1}} \sqrt{1/10^{9}c_{m}}_{stm}Wb = (1/10^{n+5})_{stm}Wb$$

$$1_{ab}C = \sqrt{10^{2n+5}c_{m}} \sqrt{1/10^{9}c_{m}}_{stm}C = 10^{n-2}_{stm}C$$

$$1_{ab}V = \sqrt{1/10^{2n+5}c_{m}} \sqrt{1/10^{5}c_{m}}_{stm}V = (1/10^{n+5}c_{m})_{stm}V$$

次に MKS 単位系の m だけが非常に長いとした接頭語としては llm (long-length MGS) なる長距離系を考慮しよう。 $\lambda\mu_0$ および ε_0/λ は stm 系と同じである。力学系単位については 1_{llm} m = c_{m} m なので,エネルギーの単位は次式で変換される。

単位系	電磁	Gauss	MKSA	短時間対称	長距離対称	単位
接頭語	ab	\mathbf{gs}	無印	stm	llm	
$\lambda \mu_0$	4π	4π	$4\pi/10^{7}$	$4\pi c_{\rm m}/10^{2n+1}$	$4\pi c_{\rm m}/10^{2n+1}$	_x Wb/ _x A _x m
ε_0/λ	$1/4\pi c_{\mathrm{c}}^2$	$1/4\pi$	$10^7/4\pi c_{\rm m}^2$	$10^{2n+1}/4\pi c_{\rm m}$	$10^{2n+1}/4\pi c_{\rm m}^2$	$_{\rm x}C/_{\rm x}V$ $_{\rm x}m$
電流 I	1	1	10	$10^{n-2}/c_{\rm m}$	$10^{n-2}/c_{\rm m}$	хA
磁束 Φ	1	1	$1/10^{8}$	$1/10^{n+5}$	$1/10^{n+5} c_{\rm m}$	$_{\rm x}{\rm Wb}$
電荷 Q	1	$c_{\rm c}$	10	10^{n-2}	$10^{n-2}/c_{\rm m}$	$_{\rm x}{ m C}$
電位 ϕ	1	$1/c_{\rm c}$	$1/10^{8}$	$1/10^{n+5} c_{\rm m}$	$1/10^{n+5}c_{\rm m}$	xV

表 C.9 完全対称(MKS に近い)の定数と基本単位の換算表

 $\lambda\mu_0$ と ε_0/λ に対称性を壊さないように定数を入れている。

stm と llm において n=3 にすると、MKSA の 10^7 と同じ定数になる。

$$1_{\rm ab}J = 1\,{\rm g\,cm^2/s} = 10^{-3}\,{\rm kg}\,(10^{-2}/c_{\rm m})^2\,{\rm lmm^2/s} = (1/10^7\,c_{\rm m}^2)\,{\rm lmm^2/s}$$
 (llmJ)

これより以下の関係が得られる。

$$1_{\rm ab} J/_{\rm ab} m = (1/10^5 c_{\rm m})_{\rm llm} J/_{\rm llm} m$$

$$I_{ab}J_{ab}m = (1/10^9 c_m^3)_{llm}J_{llm}m$$

そこで次の変換式が得られる。

$$1_{ab}A = \sqrt{10^{2n+1}/c_{m}} \sqrt{1/10^{5} c_{m}} \lim A = (10^{n-2}/c_{m}) \lim A$$

$$1_{ab}Wb = \sqrt{c_{m}/10^{2n+1}} \sqrt{1/10^{9} c_{m}^{3}} \lim Wb = (1/10^{n+5} c_{m}) \lim Wb$$

$$1_{ab}C = \sqrt{10^{2n+5} c_{m}} \sqrt{1/10^{9} c_{m}^{3}} \lim C = (10^{n-2}/c_{m}) \lim C$$

$$1_{ab}V = \sqrt{1/10^{2n+5} c_{m}} \sqrt{1/10^{5} c_{m}} \lim V = (1/10^{n+5} c_{m}) \lim V$$

以上の結果をまとめたものを**表 C.9** に示す。この表には参考のために MKSA 単位系も入 れてある。結論から言えば、短時間対称系も長距離対称系も $\lambda\mu_0$ と ε_0/λ に対称性を壊さない ように $c_m/10^7$ (つまり n=3) なる定数を入れるとうまくいく。しかし、stm では電流と電位 が MKSA の $1/c_m$ になり、llm では 4 つの基本単位とも $1/c_m$ になっており、両単位系とも単 位は極めて大きい(したがって換算数字は小さい)。

付録 D

作用積分

D.1 ラグランジュ・ダランベールの仮想変位の原理

まず剛体なども扱うことを前提に,多数の質点からなる系の静力学を考えよう。各質点では 力の総和が0になるはずであるから,次の式が成立する。

$$F_i + R_i = 0$$
 $(i = 1, \cdots,$ 質点の総数)

ここで、 F_i は各質点に働く外力であり、 R_i は、互いに束縛し合う質点間に働く束縛力 (constraining force) である。

例えば、二つの質点が一定距離になるような**束縛**(constraint)を受けている場合、束縛条件の個数、つまり束縛力の数は一個である。三個の質点が一体として動く場合には、三個の束縛条件が存在する。四個の質点が一体として動く場合には、新たな質点を他の三個に対して固定するために、さらに三個の束縛条件が存在する。以下同様に質点の数が増えるごとに、束縛条件の数は3 ずつ増えていくので、m 個の質点が一体として動いている場合には、束縛条件の数は3m - 6(m = 2の場合は1)となる。なお m 個の集団の運動を記述するには、その重心の位置と角度の自由度の合わせて 6 個 (m = 2の場合は 5)の自由度で十分であるので、自由度と束縛条件の数の和は、元の成分の総数 3N になる。

同様に質点が個別にレールのような一次元的なものに束縛されている場合には,質点ごとに 二個の束縛条件があることになる。曲面に束縛されているときには,質点ごとに一個の束縛条 件があることになる。その他,質点系と質点系が蝶番のように,部分的な束縛条件を満たす場 合など,色々な束縛があるが,同様に扱うことが可能である。

上式が成立すれば、これにどんな量を掛けても(元がベクトルであるので、スカラー倍でも 内積でも外積でもよい)、また、その結果をいくつ合計しても0となるから、次式が成立する。

$$\sum_i \delta \boldsymbol{r}_i \cdot (\boldsymbol{F}_i + \boldsymbol{R}_i) = 0$$

この場合には、各質点の僅かな変位 δr_i との内積をとって、総和をとっている。なお、変位が あれば $F_i + R_i$ は僅かに変化する可能性があるが、その影響は二次の微小量となり無視でき る。このように変位に対して、それらの関数が 0 に保たれることを**停留**(stationary)すると いう。

さて、この変位 δr_i がすべての束縛条件を満たす場合、次の式が成立する。

$$\sum_{i} \delta \boldsymbol{r}_{i} \cdot \boldsymbol{F}_{i} = 0$$

この式は**ダランベールの仮想変位の原理**(d'Alenbert principle of virtual displacement)と 呼ばれるものである。

その理由は、質点そのものに束縛条件がある場合には $\delta \mathbf{r}_i \cdot \mathbf{R}_i = 0$ が成立するし、質点間に束 縛条件がある場合には $\sum_i \delta \mathbf{r}_i \cdot \mathbf{R}_i = 0$ が成立するからである。後者の場合、例えば二質点に束 縛がある場合には $|\mathbf{r}_1 - \mathbf{r}_2|^2$ が一定という関係が成立する。これより、 $(\delta \mathbf{r}_1 - \delta \mathbf{r}_2) \cdot (\mathbf{r}_1 - \mathbf{r}_2) = 0$ 、つまり、 $\delta \mathbf{r}_1 - \delta \mathbf{r}_2 = 0$ は、2 質点を結ぶ直線に垂直になる。一方、 $\mathbf{R}_1 = -\mathbf{R}_2$ は二質点を 結ぶ直線に平行であるから、 $\delta \mathbf{r}_1 \cdot \mathbf{R}_1 + \delta \mathbf{r}_2 \cdot \mathbf{R}_2 = \delta \mathbf{r}_1 \cdot \mathbf{R}_1 - \delta \mathbf{r}_2 \cdot \mathbf{R}_1 = (\delta \mathbf{r}_1 - \delta \mathbf{r}_2) \cdot \mathbf{R}_1 = 0$ が得られる。

さて,議論に必要な成分の総数 N は,一般には質点数の三倍であるが,一次元空間の質点 を議論する場合には,質点数の一倍になるし,二次元空間の質点を議論する場合には,質点数 の二倍になる。こうした種々の場合を扱うことを考え,力や変位の成分をバラバラに分けて, その最初から連続的に符番しておこう。例えば位置のベクトルは,**r**₁の三成分を x₁, x₂, x₃ とし,**r**₂の三成分を x₄, x₅, x₆ と記載するのである。力についても同様に符番する。する と,ダランベールの仮想変位の原理の式は次のように書ける。

$$\sum_{i}^{N} \delta x_i F_i = 0$$

ここで, N は質点の位置を表現するために必要な成分の総数で, 質点の数に空間の次元数倍したものである。

ラグランジュは、この原理を、動力学にも適用されるように拡張した。動力学の場合には、 各質点に、加速度に対応する加速力 $-m_i \vec{r}_i$ が追加されたとすれば、静力学と同じに議論でき る。ここでも、加速力を成分分けし、改めて符番しよう。一質点の成分に現れる質量はすべて 同じ値となるが、成分ごとに強制的に 1 から順に符番することとする。つまり三次元空間の最 初の質点の加速力の三成分 $(m_1 \ddot{x}_1, m_1 \ddot{y}_1, m_1 \ddot{z}_1)$ は $m_1 \ddot{x}_1, m_2 \ddot{x}_2, m_3 \ddot{x}_3$ と表現することとす る。すると各質点の成分ごとに次の式が成立する。

$$F_i + R_i - m_i \ddot{x}_i = 0$$

これに任意の変位を掛けたものも、またそれらの総和も0となる。

$$\sum_{i}^{N} \delta x_i \left(F_i + R_i - m_i \ddot{x}_i \right) = 0$$

ここで δx_i を束縛条件にしたがった変位とすると

$$\sum_{i}^{N} \delta x_{i} R_{i} = 0$$

であるから、次式が成立する。

$$\sum_{i}^{N} \delta x_i \left(m_i \ddot{x}_i - F_i \right) = 0 \tag{D.1}$$

ダランベールの仮想変位の原理というと、この式を指すことが多いが、本書では前掲の静力学 の式と区別するために、またラグランジュに敬意を表する意味で、**ラグランジュ・ダランベー** ルの仮想変位の原理(Lagrange d'Alenbert principle of virtual displacement)と呼ぶことに する。

D.2 ラグランジュの運動方程式

束縛のある場合,この力学系の自由度 n は N よりも小さな値となる。その場合,多くの ケースで x_i とは異なる別の変数を利用するほうがよいことが多い。例えば、円運動をしてい る質点ならば θ 一つを使えばよいし、互いに等距離に接続された二質点ならば、重心の座標 と、二質点を結ぶ直線の方向を示す極座標的二つの角度を使うのが便利である。こうした座標 を一般化座標(generalized coordinate)と呼び、 $q_j: (j = 1, \dots, n)$ とする。

式 (D.1) を書き換えよう。まず第一項は次のように変形できる。

$$\begin{split} \sum_{i}^{N} \delta x_{i} m_{i} \ddot{x}_{i} &= \sum_{i}^{N} m_{i} \ddot{x}_{i} \left(\sum_{j}^{n} \delta q_{j} \frac{\partial x_{i}}{\partial q_{j}} \right) \\ &= \sum_{i}^{N} \sum_{j}^{n} \delta q_{j} \left[\frac{d}{dt} \left(m_{i} \dot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}} \right) - m_{i} \dot{x}_{i} \frac{d}{dt} \left(\frac{\partial x_{i}}{\partial q_{j}} \right) \right] \\ &= \sum_{j}^{n} \sum_{i}^{N} \delta q_{j} \left[\frac{d}{dt} \left(m_{i} v_{i} \frac{\partial x_{i}}{\partial q_{j}} \right) - m_{i} v_{i} \left(\sum_{k}^{n} \frac{\partial^{2} x_{i}}{\partial q_{j} \partial q_{k}} \dot{q}_{k} + \frac{\partial^{2} x_{i}}{\partial q_{j} \partial t} \right) \right] \\ &= \sum_{j}^{n} \sum_{i}^{N} \delta q_{j} \left[\frac{d}{dt} \left(m_{i} v_{i} \frac{\partial v_{i}}{\partial \dot{q}_{j}} \right) - m_{i} v_{i} \frac{\partial v_{i}}{\partial q_{j}} \right] \\ &= \sum_{j}^{n} \delta q_{j} \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right] \end{split}$$

ただし, T は次のように定義されている。

$$T = \sum_{i}^{N} \frac{1}{2} m_i v_i^2$$

二行目から三行目への変形は, f'g = (fg)' - fg'を利用している。また, 四行目と五行目の 変形は,

$$\frac{\partial v_i}{\partial \dot{q}_j} = \frac{\partial \dot{x}_i}{\partial \dot{q}_j} = \frac{\partial x_i}{\partial q_j}$$
$$\frac{\partial v_i}{\partial q_j} = \frac{\partial}{\partial q_j} \left(\frac{dx_i}{dt}\right) = \frac{\partial}{\partial q_j} \left(\sum_{k=1}^n \frac{\partial x_i}{\partial q_k} \dot{q}_k + \frac{\partial x_i}{\partial t}\right)$$

の関係を利用する。各右辺が四行目に,各左辺が五行目に現れている。これらの式の誘導から 分かるように,T は見掛けは v_i の関数であるが,各 v_i は q_j と \dot{q}_j で書き換えられていること を前提としている。したがって $T(q, \dot{q})$ である。

一方,第二項は次のようになる。

$$\sum_{i}^{N} \delta x_{i} F_{i} = \sum_{i}^{N} \left(\sum_{j}^{n} \delta q_{j} \frac{\partial x_{i}}{\partial q_{j}} \right) F_{i} = \sum_{j}^{n} \delta q_{j} \left(\sum_{i}^{N} \frac{\partial x_{i}}{\partial q_{j}} F_{i} \right) = \sum_{j}^{n} \delta q_{j} F_{j}^{g}$$

最後の括弧を F_j^g としたが、これは**一般化力**(generalized force)と呼ばれている。 以上の結果をまとめると次式が得られる。

$$\sum_{j}^{n} \delta q_{j} \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} - F_{j}^{g} \right] = 0$$

 δq_i は独立に変動できるので、次の式が得られる。

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_j}\right) - \frac{\partial T}{\partial q_j} = F_j^g \qquad (j = 1, \cdots, n)$$

これがラグランジュの導いた方程式であり、ニュートンの運動方程式と等価なものである。 特に保存力場の場合は、 $F_i = -\partial U/\partial x_i$ として、次のように変形できる。

$$\sum_{i}^{N} \delta x_{i} F_{i} = -\sum_{i}^{N} \sum_{j}^{n} \delta q_{j} \frac{\partial x_{i}}{\partial q_{j}} \frac{\partial U}{\partial x_{i}} = -\sum_{j}^{n} \delta q_{j} \frac{\partial U}{\partial q_{j}}$$

したがって

$$L(q_1,\cdots,q_n,\dot{q}_1,\cdots,\dot{q}_n)=T(q_1,\cdots,q_n,\dot{q}_1,\cdots,\dot{q}_n)-U(q_1,\cdots,q_n)$$

としてラグランジュの方程式は次のようになる。

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0 \qquad (j = 1, \cdots, n)$$

この式は特に**ラグランジュの運動方程式**(Lagrange equation of motion),あるいはオイ **ラーの微分方程式**(Euler differential equation)と呼ばれる。また,*L*は**ラグランジアン** (Lagrangian)と呼ばれる。なお,上に示した*L*の表記は長ったらしいので,よく次式のよう に略記される。

$$L(q, \dot{q}) = T(q, \dot{q}) - U(q)$$

なお,電磁気学の**ローレンツカ**(Lorentz force)のように,速度の影響が入っているような 力は,保存力の扱いができず,若干の工夫が必要であり,その手法については後の節に示す。

D.3 ラグランジュの未定係数法

本節では束縛力の大きさを簡単に求める方法を示そう。ラグランジュ・ダランベールの仮想 変位の原理からスタートする。

$$\sum_{i=1}^{N} \delta x_i \left(m_i \ddot{x}_i - F_i \right) = 0$$
 (D.2)

ここで、 $\delta x_i \delta c = N - n$ 個の束縛条件にしたがう変位とした場合、この式は、自由度 n の δx_i の変位に対し停留する。

c個の束縛条件が次のように陰関数で与えられているとしよう。

$$G_k(x_1,\cdots,x_N)=0 \qquad (k=1,\cdots,c)$$

これから δx_i の変位に対する条件が得られる。

$$\sum_{i=1}^{N} \delta x_i \frac{\partial G_k}{\partial x_i} = \sum_{i=1}^{N} \delta x_i g_{ki} = 0 \qquad (k = 1, \cdots, c)$$

ここで $g_{ki} = \partial G_k / \partial x_i$ と再定義してある。

ここでラグランジュの未定係数法と呼ばれる手法を利用しよう。まずその手法について述べると、まずこれらの束縛条件の微分に任意定数 λ_k : $(k = 1, \dots, c)$ を掛け、それらを式 (D.2) から引いた式を作る。

$$\sum_{i=1}^{N} \delta x_i \left[m_i \ddot{x}_i - F_i - \sum_{k=1}^{c} \lambda_k g_{ki} \right] = 0$$

このように新たに c 個の未知数を導入することにより,変位をまったく自由にする手法が**ラグ ランジュの未定係数法**(Lagrange method of undetermined multiplier)である。

ラグランジュの未定係数法は次のように表現できる。 $f_i = m_i \ddot{x}_i - F_i$ と置こう。すると、N 次元空間のベクトルで表現した場合、証明すべき命題は次のようになる。

c 個の束縛条件のi成分を g_{ki} とすると、束縛条件はベクトル δx と g_k の内積が0、つまりこれらが直交していることを示す。このとき、たまたま δx とfが直交していれば、fは g_k の線形結合で与えられるというものである。

例えば、N = 3で、束縛条件がc = 2とすると、最初の束縛条件で、 δx は g_1 と垂直な 面上になければならなくなる。次の束縛条件で、 g_2 と垂直な別の面上になければならなくな る。この結果、 δx はこれら二つの面の交線上になければならなくなる。さて、ベクトル fがこの交線に垂直ならば、f が g_1 と g_2 の作る面内に入り、これらの線形結合で与えられる ということになる。

証明は次のようになる。c 個の束縛条件が独立であれば、 g_{ki} を行列で表したとき、その rank は c となる。このとき、列を適宜入れ替えて、左の $c \times c$ の部分行列の行列式が 0 にな らないようにしておく。束縛条件の式から $\delta x_1, \dots, \delta x_c$ の関わる部分と $\delta x_{c+1}, \dots, \delta x_N$ の 関わる部分とに分ける。

$$\sum_{i=1}^{c} \delta x_i g_{ki} = -\sum_{i=c+1}^{N} \delta x_i g_{ki}$$

左辺の行列の行列式は 0 でないから, $\delta x_1, \dots, \delta x_c$ は $\delta x_{c+1}, \dots, \delta x_N$ の一次結合で表され ることになる。これは,N 次元システムで,c 個の束縛があるため,N – c の自由度がある ことに対応している。つまり, $\delta x_{c+1}, \dots, \delta x_N$ は勝手に選ぶことができ,残りはこれらから 決定される。

さて、束縛条件を満たす δx_i であれば、次式は必ず成立する。

$$\sum_{i=1}^{N} \delta x_i \left(f_i - \sum_{k=1}^{c} \lambda_k g_{ki} \right) = 0$$

ここで、 λ_k を次式を満たすように決めよう。

$$f_i - \sum_{k=1}^c \lambda_k g_{ki} = 0 \qquad (i = 1, \cdots, c)$$

これを前式に代入すると、次式が成立する。

$$\sum_{i=c+1}^{N} \delta x_i \left(f_i - \sum_{k=1}^{c} \lambda_k g_{ki} \right) = 0$$

ここで、 $\delta x_{c+1}, \cdots, \delta x_N$ は任意に選べるので、

$$f_i - \sum_{k=1}^c \lambda_k g_{ki} = 0 \qquad (i = c+1, \cdots, N)$$

が成立する。これと $\delta x_1, \cdots, \delta x_c$ に成立した式を合わせると、次式が導かれる。

$$f_i = \sum_{k=1}^n \lambda_k g_{ki} \qquad (i = 1, \cdots, N)$$

つまり、ダランベールの仮想変位の原理を示す n 個の自由度を持つ式と同じ式に、cの束縛 数の未知数 λ_k を係数とする式を加えたことにより、N 個の δx_i をまったく自由に変位できる ことになるのである。すると、前節と同じ手続きで次の式を誘導することができる。

$$\sum_{i=1}^{N} \delta x_i \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \right) - \frac{\partial T}{\partial x_i} - F_i - \sum_{k=1}^{c} \lambda_k g_{ki} \right] = 0$$

これから、保存場の場合、ラグランジュの運動方程式は次のようになる。

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_i} \right) - \frac{\partial L}{\partial x_i} = 0 \qquad (i = 1, \cdots, N)$$
$$\frac{\partial L}{\partial \lambda_k} = 0 \qquad (k = 1, \cdots, c)$$

ただしラグランジアン L は次式で与えられる。

$$L = T(x, \dot{x}) - U(x) + \sum_{k=1}^{c} \lambda_k G_k(x)$$

また束縛力 R_i は次のようになる。

$$R_i = \sum_{k=1}^{c} \lambda_k g_{ki} = \sum_{k=1}^{c} \lambda_k \frac{\partial G_k}{\partial x_i} \qquad (k = 1, \cdots, N)$$

本節で示した議論は、デカルト座標系 x_i を基本としたが、一般座標系 q_j で示した運動に、 さらなる束縛がある場合でも、まったく同じ議論が成立する。その場合、これらの式の x_i を q_i で置き換えた式が成立する。

D.4 最小作用の原理

最小作用の法則とは次のようなものである。今, ラグランジアン *L* に関する次の積分を考える。

$$S(q(t)) = \int_{t_0}^{t_1} dt \ L\left(q(t), \dot{q}(t)\right)$$

ここで,運動の軌跡 q(t) は $q(t_0)$ の値と $q(t_1)$ の値が定まっているだけで,途中は任意の関数 であり,必ずしも,運動の方程式を満たした解とは限っていない。この積分値を**作用**(action) と呼ぶ。

さて、ここから軌跡を $q(t) + \delta q(t)$ と僅かに動かしてみる。すると作用も僅かに変化する。 ここで、重大な事実が存在する。この作用が停留する、つまり軌道を僅かに変えても作用がほ とんど変わらないときには、その軌道は運動方程式を満たす。また、逆に運動方程式を満たす 軌道の周辺で、軌道を僅かに変えても、作用は停留するというものである。本書では説明を省 くが、停留といっても最小値になるので、最小作用の原理(principle of minimum action)と 呼ぶ。

作用が停留するときに、軌道が運動方程式を満たすことは次のように証明できる。質点 がある軌跡から少しずれた軌跡 $q(t) + \delta q(t)$ をとると、軌跡の移動に伴って各点での速度も $\dot{q}(t) + d(\delta q(t))/dt$ と変化する。したがって、ずれた軌道での作用と元の軌道の作用の差は次 のようになる。

図 D.1 動滑車と静滑車により構成された系。

$$\begin{split} \delta S = &S(q(t) + \delta q(t)) - S(q(t)) \\ &= \int_{t_0}^{t_1} dt \, L \left(q(t) + \delta q(t), \, \dot{q}(t) + \frac{d\delta q(t)}{dt} \right) - S(q(t)) \\ &= \int_{t_0}^{t_1} dt \left[\delta q(t) \frac{\partial L}{\partial q} + \frac{d\delta q(t)}{dt} \frac{\partial L}{\partial \dot{q}} \right] \\ &= \delta q(t) \frac{\partial L}{\partial \dot{q}} \Big|_{t_0}^{t_1} + \int_{t_0}^{t_1} dt \left[\delta q(t) \frac{\partial L}{\partial q} - \delta q(t) \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \\ &= \int_{t_0}^{t_1} dt \, \delta q(t) \left[\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \end{split}$$

これが任意の微小軌道変形について,常に0となるためには,次式が成立しなければならない。

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0$$

この式は前出のラグランジュの運動方程式そのものである。逆にこの式が成立すれば、作 用が停留することも明らかである。なお、上式の $p = \partial L/\partial \dot{q}$ を一般化運動量(generalized momentum)と呼ぶが、速度を *m* 倍だけした運動量とは若干異なる値となることがあるので、 注意が必要である。

D.5 滑車の例

ここでちょっと例を上げておこう。図 **D.1** に示すような天井に一端を固定された紐を,動 滑車,静滑車を経由し, m_1 の質量で終端する。動滑車には m_2 なる質量がぶら下っていると する。二つの質点の高さを x_1 , x_2 としよう。すると $x_1 + 2x_2 = \text{const}$ なる束縛条件が成立す る。高さの原点を適切に選ぶことにより、この右辺を0に調整しよう。

直前に示した方法で、束縛力を求めてみよう。ラグランジアンは次のようになる。

$$L = \frac{1}{2}(m_1\dot{x}_1^2 + m_2\dot{x}_2^2) - g(m_1x_1 + m_2x_2) + \lambda(x_1 + 2x_2)$$

これを x_1, x_2, λ の三変数の関数としてラグランジュの運動方程式を立てると次のように なる。

$$m_1 \ddot{x}_1 = -m_1 g + \lambda$$

$$m_2 \ddot{x}_2 = -m_2 g + 2\lambda$$

$$x_1 + 2x_2 = 0$$
(D.3)

これらの式から x_1 と λ を消去すると次の式が得られる。

$$(4m_1 + m_2)\ddot{x}_2 = -(m_2 - 2m_1)g$$

ちなみに,この式は x_2 を唯一の一般座標とし, $x_1 = -2x_2$ であることを考慮して束縛条件の入らないラグランジアンを求める。

$$L = \frac{1}{2}(4m_1\dot{x}_2^2 + m_2\dot{x}_2^2) - g(-2m_1x_2 + m_2x_2)$$

これをラグランジュの運動方程式に代入して得られる式は,ニュートンの運動方程式とまった く一致する。このニュートンの方程式を解くと,重力が –[(m₂ – 2m₁)/(4m₁ + m₂)]g になっ たときの運動と一致する。

再び,式 (D.3) へ戻ろう。*x*₂ の満たすべき式が分かると,第三式を用いて,*x*₁ の満たすべ き式が分かる。

$$(4m_1 + m_2)\ddot{x}_1 = 2(m_2 - 2m_1)g$$

さらに、これらを第一または二式に代入すると *λ* に関する式が誘導できる。

$$\lambda = \frac{3m_1m_2}{4m_1 + m_2}g$$

これらから、束縛力は次のように得られる。

$$R_{1} = \lambda \frac{\partial x_{1} + 2x_{2}}{\partial x_{1}} = \frac{3m_{1}m_{2}}{4m_{1} + m_{2}}g$$
$$R_{2} = \lambda \frac{\partial x_{1} + 2x_{2}}{\partial x_{2}} = 2\frac{3m_{1}m_{2}}{4m_{1} + m_{2}}g$$

つまり, *m*₁, *m*₂ は, 紐によりこれらの力で上向きに引かれることになる。*R*₂ が二倍なのは, 紐が二本あるからである。

D.6 電磁気学のラグランジアン

次式で与えられるローレンツ力は位置だけでなく、速度にも依存する量である。

$$\boldsymbol{F} = Q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$

したがっていわゆる保存力ではなく,ポテンシャル表示はできない。しかし,ラグランジアン では表示できるという面白い力である。

まず成分展開し、ポテンシャルで表示しておこう。x 成分は次のようになる。

$$\begin{split} F_x =& Q(E_x + v_y B_z - v_z B_y) \\ =& Q\left(-\frac{\partial \phi}{\partial x} - \frac{\partial A_x}{\partial t} + v_y \frac{\partial A_y}{\partial x} - v_y \frac{\partial A_x}{\partial y} - v_z \frac{\partial A_x}{\partial z} + v_z \frac{\partial A_z}{\partial x}\right) \\ =& Q\left(-\frac{\partial \phi}{\partial x} - v_x \frac{\partial A_x}{\partial x} - v_y \frac{\partial A_x}{\partial y} - v_z \frac{\partial A_x}{\partial z} - \frac{\partial A_x}{\partial t} + v_x \frac{\partial A_x}{\partial x} + v_y \frac{\partial A_y}{\partial x} + v_z \frac{\partial A_z}{\partial x}\right) \\ =& Q\left(-\frac{dA_x}{dt} + \frac{\partial(v_x A_x + v_y A_y + v_z A_z - \phi)}{\partial x}\right) \\ =& Q\left[-\frac{d}{dt}\left(\frac{\partial(v_x A_x + v_y A_y + v_z A_z - \phi)}{\partial v_x}\right) + \frac{\partial(v_x A_x + v_y A_y + v_z A_z - \phi)}{\partial x}\right] \\ =& Q\left[\frac{d}{dt}\left(\frac{\partial U}{\partial v_x}\right) - \frac{\partial U}{\partial x}\right] \end{split}$$

ただし, U は次で定義されているとする。

$$U = Q\left(\phi - v_x A_x - v_y A_y - v_z A_z\right)$$

他の成分についても同様な形となるので、ラグランジアンは次のようになる。

$$L = T - U = \frac{1}{2}m\left(v_x^2 + v_y^2 + v_z^2\right) - Q\left(\phi - v_xA_x - v_yA_y - v_zA_z\right)$$

逆にこれを解くには、まず一般化運動量を求める。x 成分に着目すると

$$p_x = \frac{\partial L}{\partial v_x} = mv_x + QA_x$$

が得られる。これから運動方程式は

$$\frac{dp_x}{dt} = \frac{\partial L}{\partial x}$$

に代入して,

$$m\dot{v}_x + Q\left(\frac{\partial A_x}{\partial t} + v_x\frac{\partial A_x}{\partial x} + v_y\frac{\partial A_x}{\partial y} + v_z\frac{\partial A_x}{\partial z}\right) = -Q\left(\frac{\partial\phi}{\partial x} - v_x\frac{\partial A_x}{\partial x} - v_y\frac{\partial A_y}{\partial x} - v_z\frac{\partial A_z}{\partial x}\right)$$

となる。左辺第二項以降を右辺に移項し,整理するとローレンツ力の *x* 成分が得られる。 また,相対論的速度の場合には

$$T = \frac{mc^2}{\sqrt{1 - (v_x^2 + v_y^2 + v_z^2)/c^2}}$$

と修正すればよいので、次式のラグランジアンでよい。

$$L = T - U = \frac{mc^2}{\sqrt{1 - (v_x^2 + v_y^2 + v_z^2)/c^2}} - Q(\phi - v_x A_x - v_y A_y - v_z A_z)$$

さらに,

$$L^r = mc^2 - Q\left(U_t\phi - U_xA_x - U_yA_y - U_zA_z\right)$$

として,

$$\int_{s_0}^{s_1} ds \, L^r$$

なる停留問題にすることもできる。ただし,

$$ds = \sqrt{dt^2 - dx^2 - dy^2 - dz^2}$$

付録 E

ベクトルの公式

$$egin{aligned} oldsymbol{A} \cdot oldsymbol{B} = oldsymbol{B} \cdot oldsymbol{A} \ oldsymbol{A} imes oldsymbol{B} = -oldsymbol{B} imes oldsymbol{A} \ oldsymbol{A} \cdot oldsymbol{B} = -oldsymbol{B} imes oldsymbol{A} \ oldsymbol{A} \cdot oldsymbol{B} = oldsymbol{B} \cdot oldsymbol{(C} imes oldsymbol{A}) = oldsymbol{C} \cdot oldsymbol{(A} imes oldsymbol{B}) \ oldsymbol{A} imes oldsymbol{(B} imes oldsymbol{C}) = oldsymbol{A} \cdot oldsymbol{C} = oldsymbol{C} \cdot oldsymbol{(C} imes oldsymbol{A}) = oldsymbol{C} \cdot oldsymbol{(A} imes oldsymbol{B}) \ oldsymbol{A} imes oldsymbol{(B} imes oldsymbol{C}) = oldsymbol{(A} \cdot oldsymbol{C}) oldsymbol{B} - oldsymbol{(A} \cdot oldsymbol{B}) oldsymbol{C} \end{aligned}$$

$$grad(fg) = f grad g + g grad f$$
$$div(fA) = A \cdot grad f + f div A$$
$$rot(fA) = f rot A + grad f \times A$$
$$grad(A \cdot B) = (B \cdot \nabla)A + (A \cdot \nabla)B + A \times rot B + B \times rot A$$
$$div(A \times B) = B \cdot rot A - A \cdot rot B$$
$$rot(A \times B) = A div B - B div A + (B \cdot \nabla)A - (A \cdot \nabla)B$$

 $div(grad f) = \nabla^2 f$ rot(grad f) =**0** grad(div **A**) = rot(rot **A**) + $\nabla^2 \mathbf{A}$ div(rot **A**) =0 rot(rot **A**) = grad(div **A**) - $\nabla^2 \mathbf{A}$

付録 F

パラドックスの解答

安易に解答を読んではいけない。ここに解答を示したのは,パラドックスに解答が示されて いないが故に,電磁気学が誤っているという非難に対抗するためである。

F.1 平行平板キャパシタに挿入された誘電体に働く力

 $\varepsilon \to \infty$ の場合を考える。この場合には、誘電体中の電場は限りなく弱くなるので、金属に 差し替えてもほとんど同じである。そこで、誘電体の代わりの金属をやや薄くし、極板との間 にギャップを空けてみよう。

まず,ほとんどのところは,極板に垂直な電場が発生するが,端だけはこれが乱れる。図 F.1 に示す電気力線が,挿入された金属の先端部分と金属が外にはみ出す部分で曲がっているとこ ろである。先端部分では,挿入された金属の先端に,明らかに横向きでかつ金属を引き込む電 場が働いている。一方,極板側の電場は必ず極板に垂直で横向きの力にはなっていない。逆に 金属が外部にはみ出す部分では,金属と極板の位置関係が逆なだけで,ほぼ同じ図となってお り,今度は極板は横向きの力を受けるが,金属は横向きの力を受けないという結果が得られる。

この力の大きさをおよそ見積もることができる。先端部分のちょっと内側では等電位面はほ ぼ平行で等間隔であるが,外側ではほぼ放射状に拡がる。先端に対応する極板の位置から *r* 離

図 F.1 キャパシタの端では電場が乱れている。

れたところの円を考えると、等電位面はほぼ等間隔でこの円を横切ることになる。そこで金属 の端面での電場は $E = V/2(\pi r/2) = V/\pi r$ となる。ここで、極板間の電位差を V、その半分 がギャップにかかっており、それを 1/4 円周で割ることで、電場を求めている。端面に働く 力は $\varepsilon_0 E^2/2 = \varepsilon_0 V^2/2\pi^2 r^2 \epsilon$, r = a から ∞ まで積分することにより得られるので、単位 奥行当たりの力は $F = \varepsilon_0 V^2/2\pi^2 a = \varepsilon_0 Q^2/2\pi^2 C^2 a$ であるが、計 4 箇所に働いているので、 $F = (2/\pi^2)\varepsilon_0 Q^2/C^2 a$ となる。

一方,仮想変位の原理から求めた力は $F = (Q^2/2)d(1/C)/dx = (1/2)\varepsilon_0Q^2/C^2a$ であるから, $\pi^2/4$,つまり倍程度大きい。これは大きな差と感じる人も多いだろうが,実際の等電位面は金属の突端でもっと金属寄りを通過し,その結果,金属突端付近で電場はかなり大きくなるので,十分理解できる誤差である。いずれにせよ,挿入された金属の先端部で極板のすぐ近傍にのみ横向きに引っ張る力が存在することが確認できたのである。

なお,挿入金属には先端付近に横向きの力がかかっているが,その付近の極板には面垂直の 力はあるものの,横向きの力はかかっていない。作用反作用の法則はどうなっているのだろう と疑問に感じた人がいるかも知れない。実は,極板には,導体が外へ出る付近で,横向きの力 がかかっている。

これは,次のように理解できる。挿入金属の突端にかかる力の反作用は,まず極板内のその 辺に存在する電荷に働く。この辺りの電荷が力を受けると,電荷は移動を開始するが,その結 果,極板内の電荷密度に変化が起こる。これら移動や密度変化はいずれ平衡に達するが,その 時点で突端付近に存在した電荷の受けた横向きの力は,他の電荷の力に移動していき,結局, 極板縁の電荷にまで伝わる。ということで,あたかも剛体に力がかかったときのように,力は 電荷全体に及び,その結果,とんでもない電荷に反作用が働くのである。

次にギャップおよびその周辺の空間に働くマクスウェル応力を見てみよう。この空間の縁は すべて導体であり、電場は空間に垂直であるので、 $\varepsilon_0 E^2/2$ なる引力がかかることになる。こ の引力はギャップ内では、空間を上下に引っ張る形になっているが、より大きな力が金属突端 付近と極板縁にかかっている。図 **F.1** の空間部分に着目してみると、空間にかかる力はバラ ンスしている。また導体には、この反作用である引力がかかることになる。このように静的な 場合のマクスウェル応力とは、結局、導体側の電荷の剛体的集合運動の結果を反映し、一見予 想もつかないような形となることが理解できよう。

まとめると,端では電場が曲っており,その効果が誘電体を引き込む力になっているので ある。

F.2 磁場の中心

どんな一様な磁場でもどこかにある電流が作っている。電流が流れるとベクトルポテンシャ ルが作られる。それはおおよそ電流に沿って発生し,電流から遠ざかると弱まる傾向がある。 例えば、円筒状のソレノイドの作るベクトルポテンシャルは、中心で0で、それから半径に比例して大きくなり、ソレノイドの壁で、電流に比例する大きさを持ち、かつ電流の方向を向い たベクトルで表される。誘導電場はその時間微分で与えられるので、誘導電場は先に示したベ クトルポテンシャルと同じ方向を向き、電流の減少する程度に比例する。このように、誘導電 場を決定することができる。

まとめると,一様磁場というのは大局的に見ると存在しないのであり,どこかに縁があり, 誘導電場はそこに発生するのである。

F.3 強力な磁場中で動くモータの回転子に巻かれたコイルに働 く力

回転子,変圧器など,磁束を利用する機器で用いられる高透磁率鋼鈑の比透磁率 µ_r は少な くとも数百,高いものでは数万もある。コイルに電流を流すと,磁性体の表面にはコイル電流 の数百から数万倍の磁化電流が流れることになる。回転子に力が働く場合には,コイルに流れ る電流にも力が働くが,それ以上に磁性体の表面により巨大な力が働く。このため,大部分の 力は磁性体にかかり,コイルには弱い力しかかからない。このため,コイルに使われる絶縁体 や支持体には電磁的力に対する配慮はほぼ不要である。もちろん,回転子の場合,耐遠心力に 対する配慮は必要である。一方磁性体には大きな回転力が働くが,鋼鈑で作られている事か ら,十分な耐力があり,むしろ最終的に回転力を取り出す軸との結合に大きな配慮が必要と なる。

磁性体に働く力について,もう少しミクロな説明をしておこう。磁性体中には無数の電子ス ピンが存在しているが,そこに横方向に変動がある強い垂直磁場を印加すると,電子スピン方 向および磁場方向に垂直な方向に移動しようとする横向きの力が発生する。その大部分の力は 磁性体内部ではほぼ隣のスピンにかかる力と相殺するが,表面付近だけは相殺できないため, 結果として磁性体表面に大きな力がかかることになる。電子に力がかかれば,電子を引っ張っ ている原子核に力がかかり,結局磁性体を構成している結晶格子に力がかかることになる。

まとめると、力のかなりは磁性体に働き、自由電流には大きな力は働かない。

F.4 動く磁石が発生する電場

導線が固定で磁石が動いている場合,この導線を含み磁石の外側を周回する空間に固定され た閉曲線を考え,その閉曲線に対する電磁誘導で理解すれば,その曲線を通過する磁束が変化 するため,確かに起電力が発生する。しかし,導体付近の磁場は均一であり,直感的には理解 しがたい。これを理解するには、ベクトルポテンシャルを考えるのがよい。

ベクトルポテンシャルは磁石の縁付近で最大であり、その値は徐々に減少し、やがては逆向

きになって,反対側の縁付近で再び逆向きに最大となる。導線はこのベクトルポテンシャルの 変動を検知するので,起電力が発生するのである。

もう一つの理解の方法は、相対論的効果である。磁化が動くと分極が発生するのである。こ れは次節に述べる電流の相対論的効果と同じものである。磁石内には磁場を作っている(磁 化)電流があるはずであるが、それが動くと、相対論にしたがって電荷が発生するのである。 発生する電荷は移動方向に流れる電流の場所に発生する。磁石の磁化電流は、磁石の周辺電流 で代表させることができる。したがって、それが動くときに発生する電荷も磁石の縁に発生す る。それも移動方向に平行な縁に発生する。これが電場を作るのである。

まとめると,電位差は,導体が動いているか,導体がループを構成しそこに鎖交する磁場が 変化しない限り,発生しないため,パラドックスに書かれた文章は事実である。

F.5 平行移動2電荷間に働く力

第 (11) の式 (10.11) で, $Q = Q_1$, (x, y, z) = (Vt, a, 0) とすると, $E_y = Q_1 \mu_0 c^2 \gamma / (4\pi a^2)$ となる。また磁場は式 (10.12) より, $B_z = Q_1 \mu_0 c \gamma (V/c) / (4\pi a^2)$ である。したがってローレ ンツ力は $F_y = Q_2(E_y - VB_z) = Q_1 Q_2 \mu_0 c^2 \gamma (1 - V^2/c^2) / (4\pi a^2) = Q_1 Q_2 / (4\pi \varepsilon_0 \gamma a^2)$ 。移 動時の力は静止時の力には一致しないが, 四元力の第二成分は式 (10.3) より $Q_1 Q_2 / (4\pi \varepsilon_0 a^2)$ となり, 静止時の四元力の第二成分に一致する。

まとめると、力が移動時に変化するのは相対論的にいって正しい。

F.6 磁場力の消失

基準となる S 系では, $B = I/2\pi\mu_0 r$ なる磁場が存在し, v で移動している単電荷には, $F = QvB = \mu_0 QvI/2\pi r$ なる力が働く。さて,電流密度は J = I/S であるので,S 系にお ける四元電流ベクトルは (I/S, 0, 0, 0) となる。これを座標変換して,v で動く S' 系で見ると, $(\gamma I/S, 0, 0, \gamma v I/cS)$ となり,電荷密度 $\gamma v I/c^2 S$ が見えてくる。この電荷密度の作る電場は $E = \gamma v I/2\pi\varepsilon_0 c^2 r$ となるので,S' 系で静止している単電荷には $F = QE = \gamma \mu_0 Qv I/2\pi r$ な る力が働く。先に述べた力とこの力は γ だけの差しか存在せず,v が c に比べ十分小さいとき には、完全に一致する。

何故,座標変換されると、中性だった電流の線路に、電荷が現れてくるのであろうか。これ については「ファインマン物理」に書かれている。まず、簡単のために、電流は、動かない固 定負電荷と、単電荷と一緒の速度 v を持つ移動正電荷とよりなっているとしよう。S 系では、 電荷密度はいずれも $\rho = I/Sv$ となる。さて、これら分布電荷を S' 系で見てみると、まず負 電荷は長さのローレンツ収縮のため、電荷密度が上がり、 $\rho_{-} = I/\gamma Sv$ となる。一方、正電荷 は、S 系でローレンツ収縮を起こしていたはずであるので、S' 系では $\rho_{+} = \gamma I/Sv$ となる。こ れらの結果, S' 系では $\rho = (\gamma - 1/\gamma)I/Sv = \gamma v I/c^2 S$ だけの電荷が発生することになる。こ れは、前半で計算した結果と一致する。

まとめると,電流の流れている導体を動かすと,電荷が発生するので,それによる力を考慮 すれば矛盾はない。

F.7 ファインマンの作用反作用のパラドックス

図 **F.2** に示すような電荷シートの場合であるが, #1 の速度が余り速くなく相対論の効果を 考える必要のない場合を扱おう。この場合,両電荷の間の電場は,両電荷の作る電場が相殺し 0 となる。この領域外は,相殺が起きず加算的になり, $E_x = \sigma/\varepsilon_0$ となる。 σ は電荷面密度で ある。また,磁場は#2 が作るものだけとなり, #2 シートの -x 側で $B_z = \mu_0 \sigma v_2$, x 側でそ の符号反転したものとなる。このため, g は両シートの外部だけに存在し,単位体積当りの運 動量は $g_y = \mu_0 \sigma^2 v_2$ となる。#1 のシートの移動に伴い,外部領域が v_1 の速度で増加してい くので,単位 yz 面積当りの運動量の増加率は $dg_y/dt = \mu_0 \sigma^2 v_1 v_2$ となる。

さて、電荷シートが電場から受ける力は、互いに斥力となるが、その大きさは等しい。磁場 からは#1 のシートだけが力を受け、その単位 yz 面当りの値は $F_y = -\sigma B_z v_1 = -\mu_0 \sigma^2 v_1 v_2$ となる。これは明かに運動量の増加率と同じ値で、方向が反対であるので、力と運動量増加率 との総和が 0 であることが示される。

点電荷の場合も,概要を示しておこう。電磁場の運動量 *g* を構成する各項のうち交差項のみ を考える。空間の各点で,電場 *E_i* から磁場 *B_j* に向う右ネジの方向を丹念に調べていくこと になる。

まず、 $E_1 \times B_2$ を考えよう。#1 付近では、z方向を軸として右ネジに循環するような形となり、両電荷の間では -y方向を向く。#2 を通る yz 面付近に近づくと、徐々に0 になり、そこで逆転して y方向となる。#1 が#2 に近寄っていく際、もっとも大きな電磁場の運動量 (ポインティングベクトル)の変化は#1 の場所で発生する。ここでは -y方向の運動量が#1 の移動に伴なって反転するからである。このため、dg/dtは y方向を向く。

次に $E_2 \times B_1$ を考えよう。これは明かに x 軸対称となる。#1 付近や#2 付近では大きな 値になるが, 概ね, #2 を囲む球面に沿って, -x 方向から x 方向を向くベクトルになる。こ の場合には, 両電荷が近寄っていく際, 運動量の反転のような現象は起きず, 大きな運動量の

変化はないであろう。

これら電磁場運動量の増加率に両電荷に働く力を加えたものが0になるはずである。詳細の 検討はかなりの仕事になるので省くが,少なくとも運動量増加率の大きな成分である y 方向の 増加率は#1 に働く –y 方向の力で相殺されそうであるということで納得してほしい。

いずれにせよ, **E** × **B** の運ぶ運動量を考慮すれば矛盾は生じない。

F.8 ファインマンの角運動量のパラドックス

定量的考察のほうが,はっきりした結論が得られるので,それに対する解答を示そう。二 つの球体の半径を a, b,電荷を +Q, -Q とする。また,磁場は τ で 0 になるものとし, $B_z(1 - t/\tau)$ で変動するとしよう。すると,ファラデーの電磁誘導の法則から以下の電場が, 円周方向に発生する。ただし, $\rho = r \sin \theta$ である。

$$E_t = \frac{\pi \rho^2 B_z / \tau}{2\pi \rho} = \frac{\rho B_z}{2\tau}$$

この電場により、半径 b の球体が受ける力のモーメントは、次式で r = b としたものになる。

$$N = \int \left(\frac{Q}{4\pi r^2} 2\pi \rho r \, d\theta\right) \frac{\rho B_z}{2\tau} \rho = \frac{1}{4} r^2 \frac{Q B_z}{\tau} \int \sin^3 \theta \, d\theta = \frac{1}{3} r^2 \frac{Q B_z}{\tau}$$

ただし, $\int d\theta \sin^3 \theta = 4/3$ である。この結果,外殻と内殻では明らかに力のモーメントの差が 発生し,さらに磁場が0になるまでに受ける総角運動量は τ を掛けることにより,次のように なる。

$$L = \frac{1}{3}(b^2 - a^2)QB_z$$

この際,磁場を作り出すコイルには力のモーメントは働かないのだろうかという疑問が湧 く。もしソレノイドに電流を流しておいて,それを突然切断すると,切断箇所に電荷が発生す る。その電荷に力の働く可能性はあるのである。しかし,抵抗を経由して電流を0にしていく と,電荷は発生しないため,力は働かない。

となると,導体が受けた力のモーメントの反作用は電磁場に与えられるという仮説が有力に なる。そこで,ポインティングベクトルの持つ角運動量の変化量を計算しようということにな る。最後には電場のみしか残っていないので,最初のポインティングベクトルの持つ角運動量 を計算すれば,電磁場が失なった角運動量となる。電磁誘導で作られる電場は回転方向のポイ ンティングベクトルには寄与がないので,電荷の作る電場と初期磁場の作るポインティングベ クトルを対象とする。電場は

$$E_n = Q/4\pi\varepsilon_0 r^2$$

であり,磁場は B_z であるので,ポインティングベクトルは

$$S = E_n B_z \sin \theta / \mu_0 = Q B_z \sin \theta / 4\pi \varepsilon_0 \mu_0 r^2 = c^2 Q B_z \sin \theta / 4\pi r^2$$

である。このポインティングベクトルの作るモーメントは

$$S\rho/c^2 = QB_z\rho\sin\theta/4\pi r^2$$

なので、これを空隙全体で積分すると、

$$\iint 2\pi\rho r \, dr \, d\theta \, \frac{QB_z\rho\sin\theta}{4\pi r^2} = \frac{1}{3}(b^2 - a^2)QB_z$$

となって,電磁場の失なった角運動量は,導体に与えれれた角運動量と一致する。 この場合も電磁場運動量や角運動量を考慮すれば矛盾はない。

F.9 パフ・パフの角運動量のパラドックス

力は充電電流に対して働くから,まず各点での電流を求めよう。内殻のある緯度での電流は それより下の総電荷の時間微分で与えられる。まず,ある緯度以下の総電荷は次のようにな る。なお,時刻 *t* における全電荷を *Qt*/*τ* としておく。また,以下の計算で *r* = *a* とする。

$$\int_{\theta}^{\pi} \frac{Qt}{4\pi\tau r^2} 2\pi\rho r \, d\theta = \frac{Qt}{2\tau} (\cos\theta + 1)$$

この結果、ある緯度を北から南に横切る電流は $(Q/2\tau)(\cos\theta+1)$ となる。

これから電流密度を求め,各点でのローレンツ力を求め,力のモーメントを得てからそれを 積分すればよいのであるが,球の同じ緯度のものをまとめると,電流そのものと磁場を掛け て,それの作る力のモーメントを積分するだけでよいことが分かる。さらにこれをτで積分す る,つまりτを掛けると,得られる総角運動量となる。

$$L = \frac{Q}{2} \int (\cos \theta + 1) r \, d\theta B_z \cos \theta \, \rho = \frac{1}{3} r^2 Q B_z$$

r = bとr = aにおける総角運動量の差は、次のようになる。

$$L = \frac{1}{3}(b^2 - a^2)QB_z$$

この物体が得た角運動量は,前問で得られたポインティングベクトルが得る角運動量で相殺される。

この場合も電磁場の運動量や角運動量を考慮すれば矛盾はない。

F.10 トロートン・ノーブルのトルクのパラドックス

S 系の原点に静止した -Q の負電荷, $(a/\sqrt{2}, a/\sqrt{2}, 0)$ に, Q の静止した正電荷があると する。これらの電荷は、これら二点を通る直線に沿って、互いに引き合っている。正電荷の受 ける力を $(-F/\sqrt{2}, -F/\sqrt{2}, 0)$ としよう。負電荷の受ける力は、いうまでもなく、この符号 反転したものとなる。

この力の四元成分を求めておこう。まず空間成分は質点が静止しているので、これら三成分 と一致する。時間成分は $u_tF_t = u_xF_x + u_yF_y + u_zF_z$ の関係を用いて計算することができ、 四元速度が(0,0,0,c)より $(-F/\sqrt{2}, -F/\sqrt{2}, 0, 0)$ となる。

これらを S 系に対し -v の速度で動いている S' 系で観測すると,正電荷の t における位置 は $\gamma = 1/\sqrt{1 - (v/c)^2}$ として,次のように変換される。

$$\left[\gamma\left(\frac{a}{\sqrt{2}} + \frac{v}{c}ct\right), \ \frac{a}{\sqrt{2}}, \ 0, \ \gamma\left(ct + \frac{v}{c}\frac{a}{\sqrt{2}}\right)\right]$$

 $t' = \gamma \left(ct + va/\sqrt{2}c \right) = 0$ のときの正電荷の位置を求めると, $\left(a/\sqrt{2}\gamma, a/\sqrt{2}, 0 \right)$ となる。 また, 四元力は次のように変換される。

$$\left(-\gamma \frac{F}{\sqrt{2}}, -\frac{F}{\sqrt{2}}, 0, -\gamma \frac{v}{c} \frac{F}{\sqrt{2}}\right)$$

古典的な力は,質点の速度による補正 γ を行って, $\left(-F/\sqrt{2}, -F/\sqrt{2}\gamma, 0\right)$ となる。位置の x, y成分と力の成分は比例しておらず,形式上,左回りのトルクを発生しているかに見える。

この議論からも分かるように,ここで扱った力は電磁気力とは限っていない一般的なもので ある。つまり,このパラドックスは電磁気学のものではなく,相対性理論一般のものであるこ とが分かろう。

ここでも同時性の問題が存在する。そもそも、作用反作用の法則は、両質点が静止している 系で、両質点間に同時に働く力に成立しているのである。したがって、静止系でのt = 0の二 質点の位置を移動系に変換した位置で議論するほうが、正しそうである。負電荷の四元座標 (0,0,0,0)を移動系に変換すると、(0,0,0,0)である。正電荷の四元座標 $(a/\sqrt{2}, a/\sqrt{2}, 0, 0)$ を移動系に変換すると、次のようになる。

$$\left(\gamma \frac{a}{\sqrt{2}}, \ \frac{a}{\sqrt{2}}, \ 0, \ \gamma \frac{v}{c} \frac{a}{\sqrt{2}}\right)$$

明らかに異なる時刻に変換されるが,この異なる時刻の質点間には,作用反作用の法則が成立 するのである。 以上のことから,移動している質点間の作用反作用の議論を簡単に行うには,少なくとも片 方が静止している座標で議論すべきであることが理解できよう。

静止時の力として、電場による力を考えよう。

$$F = \frac{Q^2}{4\pi\varepsilon_0 a^2}$$

これを上に求めた運動中の古典的力に代入してみると

$$-\frac{Q^2}{4\pi\varepsilon_0 a^2\sqrt{2}}\left(1,\,\frac{1}{\gamma},\,0\right)$$

原点に置かれた運動電荷は,上記に示した電場と磁場を発生する。電場は原点から放射状に 出ているから,相対論に基づく *x* 方向の圧縮効果はあるものの,第二の電荷は原点の電荷から の反発力を感じる。さらに,第二の電荷は,速度 *V* で運動しているから,磁場の影響も受け る。これによる力は *y* 方向を向く。つまり,二点を通る直線と離れた方向の力を受ける。原点 の電荷は,その反作用を受けるので,結果として二つの電荷は偶力を受けることになる。S 系 では,回転方向の力はなかったのに,S'系では回転的な力が働く。これは矛盾ではないかとい うものである。

ところで、S'系で第二の電荷の受ける力は次のように与えられる。

$$\mathbf{f}' = \frac{Q^2}{4\pi\varepsilon_0} \frac{(x', y', 0)}{\sqrt{x'^2 + y'^2}}$$

これから、四元力は次のようになる。

$$F'_{\mu} = \frac{Q^2}{4\pi\varepsilon_0} \frac{(x', y', 0, 0)}{\sqrt{x'^2 + {y'}^2}^3}$$

これをS系に変換する。

$$\begin{split} F_{\mu} &= \left[\Gamma \left(F'_x + \frac{V}{c} F'_t \right), \ F'_y, \ F'_z, \ \Gamma \left(F'_t + \frac{V}{c} F'_x \right) \right] \\ &= \frac{Q^2}{4\pi\varepsilon_0} \frac{\left[\Gamma x', \ y', \ 0, \ \Gamma(V/c)x' \right]}{\sqrt{x'^2 + y'^2}^3} \\ &= \frac{Q^2}{4\pi\varepsilon_0} \frac{\left[\Gamma^2(x - Vt), \ y, \ 0, \ \Gamma^2(V/c)(x - Vt) \right]}{\sqrt{\Gamma^2(x - Vt)^2 + y^2}^3} \end{split}$$

膃の電荷の受けるローレンツ力 f を計算してみよう。

$$\mathbf{f} = Q(\mathbf{E} + \mathbf{V} \times \mathbf{B}) = \frac{Q^2}{4\pi\varepsilon_0} \frac{[\Gamma(x - Vt), y/\Gamma, 0]}{\sqrt{\Gamma^2(x - Vt)^2 + y^2}^3}$$
これら二式を比較してみると次式が確認できる。

$$F_{\mu} = \Gamma \mathbf{f}_{\mu}$$

つまり、座標変換された力には、明らかに磁場の効果が入っているのである。

もともと、ここで述べた力は、電磁気学的なものに限っていないことを思い起こしてほし い。静止系において、力が二質点を結ぶ線上に平行であれば、どんな力でもよいのである。磁 場のような速度に対し、垂直に働く力は、電磁場に独特なものと理解されているが、実はきわ めて卑近なものだったのである。それならば、何故、他の力ではこのようなものが発見されな かったのであろうか。それは、この効果がきわめて小さいからである。では何故電磁場では発 見できたのであろうか。それは、電磁場では正負の電荷があり、電場をほとんど相殺して、磁 場の効果だけを観察できる系が簡単に存在するからである。電流とは、正負の電荷がほぼ相殺 し、片方の符号の電荷だけが動く系でさる。その結果、電場は0であるが、磁場だけが観測で きるのである。

相対論を正しく用いればどちらの系の計算結果も正しい。ただし,移動している質点間の作 用反作用の議論を簡単に行うには,少なくとも片方が静止している座標で議論すべきであるこ とが理解できよう。

F.11 霜田の作用反作用のパラドックス

前半の記述は正しい。作用反作用の法則が成立しない分は,ポインティングベクトルで理解 できる。このパラドックスの問題点は,定量的考察が難しいことである。円板状磁石でなく, 微小磁石で考えると,定量的考察が可能となるが,本稿では計算を省略する。

後半の記述は間違っている。電荷が静止した系では、磁石が移動している。したがって、各 点での磁場が変化する。変化する磁場により、ファラデーの法則にしたがって、電場が発生す る。静止電荷はこの電場により横向の力を受ける。したがって、後半の場合でも、作用反作用 の法則は成立しなくなるが、それはポインティングベクトルで理解することができる。

F.12 テレゲンの磁化に働く力のパラドックス

rot *B* が存在するということは,例えば $\partial E/\partial t$ があるということである。その方向は,紙面 垂直で手前向きである。これと外部から与えられている磁場とで構成される電磁運動量ベクト ルの増加率は中央を向く内向きのベクトルとなり,全体積で積分すると自己相殺してしまう。

しかし,磁化電流が作る磁場との外積である電磁運動量ベクトルの増加率は左方向となる。 これと,磁化電流に働く力は作用反作用の法則を満すはずであり,磁化電流に働く力には矛盾 はない。磁荷分極に働く力は,電磁運動量の増加率と同じ方向になり,矛盾する。 この例も、一次元モデルで考えると正確な理解が得られる。y 方向の磁化がx = 0 から x = L まで存在するとしよう。磁化電流 K が、x = L で-z 方向に、x = 0 でz 方向に流れ ているとしよう。ちょうと磁化領域と重なる形で、時間とともに増加する電場 $E_z = \alpha t$ が存 在するとしよう。これが変位電流となり、 B_y が発生するが、その値は x = L で $B_y = \alpha/2c^2$ 、 x = 0 で $B_y = -\alpha L/2c^2$ となる。この結果、両側の磁化電流は共に x 方向に同じ大きさの力 を受け、その和は単位 yz 面当り $F_x = \alpha KL/c^2$ となる。

一方,磁化電流は、この領域内に $B'_y = \mu_0 K$ なる磁場を発生するが、これと増加 電場の結果、電磁運動量ベクトルの増加率をこの区間で積分した結果は、-x 方向に $\partial(\varepsilon_0 E_z B'_y L)/\partial t \varepsilon_0 \mu_0 \alpha KL = \alpha KL/c^2$ となる。この電磁運動量ベクトルの増加率は磁化電流 に働く力と見事に相殺し、磁化に働く力は、磁化電流に働く力でよいことが示される。なお、 一次元モデルの場合、 B_y は生じないため、磁荷分極には力は働かない。

多くの研究者が、上記の見解であるが、Haus & Penfield^{*1}および細野^{*2*3}は、 $\varepsilon_0\mu_0 E \times M$ なる隠れた運動量があり、その運動量を補正すれば、磁荷分極に働く力の方が正しいとの見解を示している。しかし、もしそうならば、この効果は自由電流のループにも現われるはずであるが、自由電流がローレンツ力からずれる力を受けるという事実は知られていない。ちなみにこのパラッドクスの場合、 $\varepsilon_0\mu_0 E \times M$ は、 $\varepsilon_0E_zB'_u$ と一致する。

まとめると,こうした微妙な条件では,磁化は電流モデルで考えるのが正しく,磁荷モデル で考えるのは間違っていることになる。

F.13 パラドックスに対する考え方

いくつかのパラドックスに対する解答を示したが,多くのパラドックスが相対論の絡む問題 である。相対論が絡むと座標変換が正しいのか,力の変換は正しく行われているのか,電磁気 学的運動量は考慮されているのかなどの考察が必要となる。なお,点電荷などの問題は定量的 に扱うのは困難な場合が多いため,面電荷といった扱いやすい問題に差し替えて考慮するのが よい。

誘電体に働く力の場合に用いた計算を簡単するために利用したモデルなどについては,改め て検討が必要である。力の計算などは,概ねエネルギーの計算で行うのが正しいのであるが, それに付随して具体的な力がどこにどう働くのかを常に想像するのが正しい姿勢であろう。

また、局所的な問題を一般化する際の注意も必要である。一様な磁場といっても、大局的

^{*1} H. A. Haus & Jr. P. Penfield, "Force on Magnetic Dipole and Electric Current Loop", Quatary Progress Report, Res. Lab. of Electronics, MIT, No. 88, pp. 93-98, 1968

^{*&}lt;sup>2</sup> 細野敏夫「磁気双極子の磁極モデルと電流モデルは等価か?」信学論 C, Vol. J80-C-1, No. 12, pp. 545-552, 1997

^{*3} 細野敏夫, "メタ電磁気学", 森北出版, 1999

にも一様かどうかは疑う価値がある。同様な問題として、div E = 0 であるからといって、 $\oint_S dS \cdot E = 0$ という結論を出すのは明かに間違いである。 $\oint_S dS \cdot E$ の計算には小領域には 表われない計算が入ってくるため、 $\oint_S dS \cdot E = Q/\varepsilon_0$ となるのである。同様に、rot B = 0 に 対して、 $\oint_C dr \cdot B = 0$ といい切るのも間違いである。一般には $\oint_C dr \cdot B = \mu_0 I$ となる可能 性があるのである。

索引

A

B

bar magnet(棒磁石)		4
base unit(基本単位)		201
Biot-Savart law (ビオ・	・サバールの法則)	5, 41, 47,
91		

Bose condensation(ボーズ凝集)	174
boson(ボーズ粒子)	174
boundary condition (境界条件)	124
bounded charge (束縛電荷)	. 55
bounded current (束縛電流)	58

C

capacitance (キャパシタンス) 56
capacitor (キャパシタ) 56
CGS units (CGS 単位系) 184
$CGS-emu \rightarrow electromagnetic unit \dots 197$
$CGS-esu \rightarrow electrostatic unit \dots 198$
CGS 単位系(CGS units) 184
charge density (電荷密度) 31
commutator(整流子) 160
condensor (コンデンサ) 56
conductivity(導電率) 51
conductor (導体) 51
conservative field (保存場) 27
conservative force(保存力) 27
constraining force(束縛力) 215
constraint (束縛) 215
contravariant forward transform coefficient (反変
順変換係数) 143

contravariant reverse transform coefficient (反変逆
変換係数) 144
contravariant tensor(反変テンソル) 147
contravariant vector (反変ベクトル) 144
Cooper pair (クーパー対) 174
Coulomb field (クーロン場) 14, 23
Coulomb gauge (クーロンゲージ)
Coulomb law (クーロンの法則) 4, 14, 30, 33, 187
Coulomb law of magnetic charge (磁荷のクーロン
の法則) 4
Coulomb potential $(\mathcal{P} - \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P}$
Coulomb type potential(クーロン型ポテンシャル)
68, 79
covariant tensor(共変テンソル) 147
covariant vector(共変ベクトル) 146
cross-link (鎖交) 40
current (電流) 2
current continuity law(電流連続の法則) 6,38,
48, 123, 176, 193
current density(電流密度) 79
current element(電流素片) 33, 41

D

d'Alenbert principle of virtual displacement(ダラ
ンベールの仮想変位の原理) 216
De Broglie relation(ド・ブロイの関係) 86
delta function(デルタ関数) 19
derived unit (組み立て単位) 207
dielectric material (誘電体) 53
dielectric relaxation (誘電緩和) 52, 123
differentail form of Gauss law(ガウスの法則の微分
形) 31
differential form of Ampere law(アンペールの法則
の微分形) 38, 49
differential form of Faraday law(ファラデーの法則
の微分形) 49
dimension analysis (次元解析) 204
Dirac δ function (ディラックのデルタ関数) 19
displacement current (変位電流) 6, 48, 191
div (divergence) 16
divergence (発散) 15
divergence integral (発散積分) 16
divergence (div) 16
dynamic(動的) 48

E

Einstein convention(アインシュタイン規約) . 143
electric charge (電荷) 2
electric constant (電気定数) 4, 30, 197
electric energy (電気エネルギー) 95
electric field (電場) 2
electric field (電界) 2
electric flux density (電束密度) 55
electric moment (電気モーメント) 53
electric susceptibility (電気感受率) 55
electro-magnetic field (電磁場) 2
electro-magnetic field(電磁界) 2
electro-magnetism(電磁気学) 2
electro-motive force(起電力) 6
electro-static energy (静電エネルギー) 95
electro-static potential (静電ポテンシャル) 67
electromagnetic tensor (電磁テンソル) 149
electromagnetic units(電磁単位系) 197
electrostatic units(静電単位系) 198
eletromagnet(電磁石) 160
energy of electo-magnetic field(電磁場のエネル
ギー) 106
equi-potential surface(等ポテンシャル面) 40
Euler differential equation(オイラーの微分方程式)
219

F

Faraday gauge(ファラデーゲージ) 74
Faraday law(ファラデーの法則) 6, 49, 87, 191
Feynman (ファインマン) 162
field (場) 2,9
flux quantum (磁束量子) 175, 179
fluxoid (フラクソイド) 179, 180
forward transform(順変換) 142
four-vector (四元ベクトル) 142
four-vector acceleration (四元加速度) 145
four-vector current (四元電流) 152
four-vector force (四元力) 145
four-vector momentum (四元運動量) 145
four-vector potentail (四元ポテンシャル) 152
four-vector velocity (四元速度) 145
free charge(自由電荷) 54
free current (自由電流) 57
freezing of magnetic field(磁場凍結) 52, 124

G

gauge invariance(ゲージ不変性) 74
gauge transformation (ゲージ変換) 74
gauge (ゲージ)74
Gauss inner product theorem of vector field (ベク
トル場のガウスの内積定理) 17
Gauss law(ガウスの法則) 30
Gauss outer product theorem(ガウスの外積定理)
23
Gauss outer product theorem of vector field (ベク
トル場のガウスの外積定理) 23
Gauss theorem (ガウスの定理) 15, 17
Gauss theorem of scalar field(スカラー場のガウス
の定理) 15

Cause unite (ガウス単位系) 184 108
Gauss units (为 7 不平世示) 104, 190
Gauss(ガウス) 197
generalized coordinate(一般化座標) 217
generalized force (一般化力) 218
generalized momentum (一般化運動量) 223
Giorgi (ジオルジ) 198
grad (gradient) 13
gradient (勾配) 13, 28
gradient integral (勾配積分) 13
gradient (grad) 13

\blacksquare H

Hall effect(ホール効果)		51
		100
Heaviside (ヘビザイト)	••••	198
Heaviside units(ヘビサイド単位系)	184, 1	198
Heaviside-Lorentz units(ヘビサイドローレ	ンツ単	鉝
系)	184, 1	198
Helmholtz(ヘルムホルツ)	1	198
Helmholtz theorem(ヘルムホルツの定理)		69
Hertz (ヘルツ)		198

I I

induced charge(誘導電荷)		125
induced current(誘導電流)		127
induced electromotive force(誘導起電力)	88,	154
inductance(インダクタンス)	61,	177
inductor(インダクタ)		60
inner product(内積)		. 3
International Standard units(国際標準単位)	系)	
184, 199		
irrational(非有理) 18	86,	192

K

kinetic-inductance(力学インダクタンス) 178
Kirchhoff current law(キルヒホフの電流則) 77,
180
Kirchhoff fluxoid law (キルヒホフのフラクソイド則)
180
Kirchhoff voltage law(キルヒホフの電圧則) 77,
180
Kohlrausch (コールラウシュ) 198
Kronecker delta (クロネッカーデルタ) 102

\blacksquare L

Lagrange d'Alenbert principle of virtual
displacement(ラグランジュ・ダランベール
の仮想変位の原理) 217
Lagrange equation of motion(ラグランジュの運動
方程式) 219
Lagrange method of undetermined multiplier ($\bar{2}$
グランジュの未定係数法) 220
Lagrangian (ラグランジアン) 219
Lienard-Wiechert potential (リエナール・ウィーヘ
ルトポテンシャル) 154
light velocity(光速) 76
line charge(線電荷) 79
line current (線電流) 80
line delta function(線状デルタ関数) 20

line of electric force(電気力線) 33
line of force (指力線) 33
line of magnetic force (磁力線) 40
linear response(線形応答) 55
Lorentz $(\square - \nu \vee \forall)$ 141
Lorentz force (ローレンツ力) 3, 50, 91, 101, 194,
219
Lorentz transform(ローレンツ変換) 142
Lorenz condition(ローレンス条件) 75
Lorenz gauge (ローレンスゲージ) 8, 75, 176
lowering (降階) 147

\mathbf{M}

magnet (磁石) 2
magnetic charge (磁荷) 4, 33, 62
magnetic charge model(磁荷モデル) 33
magnetic constant (磁気定数) 4, 198
magnetic current (磁流) 62
magnetic energy (磁気エネルギー) 98
magnetic field (磁場) 2
magnetic field (磁界) 2
magnetic flux (磁束) 34
magnetic flux density(磁束密度) 63
magnetic materials (磁性体) 57
magnetic moment (磁気モーメント) 45, 57
magnetic penetration depth(磁気侵入長) 176
magnetic polarization(磁気分極) 209
magnetic pole (磁極) 2, 34
magnetic susceptibility(磁気感受率) 59
magnetic units(磁気単位系) 197
magnetic-inductance(磁気インダクタンス) 178
magnetization (磁化) 57, 209
magnetization current(磁化電流) 57
magnetization tensor (磁化テンソル) 155
magnetization vector (磁化ベクトル) 57
Maxwell equations(マクスウェル方程式) 6, 49
Maxwell stress tensor(マクスウェル応力テンソル)
102
Maxwell (マクスウェル) 6, 198
metric tensor (計量テンソル) 146
micro current loop (微小電流ループ) 33, 84
mixed tensor (混合テンソル) 147
MKS units (MKS 単位系) 198
MKSA units (MKSA 単位系) 184, 198
MKSA 単位糸 (MKSA units) 184, 198
MKSP units (MKSP 単位糸) 199
MKSP 単位糸(MKSP units) 199
MKS 単位糸 (MKS units) 198
momentum of electro-magnetic field (電磁場の運動
量) 102
mutual-inductance(相互インダクタンス) 89, 178

N

nabla (\bigtriangledown)		 13
natural units(自	然単位系)	 207

O

outer product (外積)		3
--------------------	--	---

P

permeability (透磁率) 59
permittivity (誘電率) 55
perpendicular surface to force(力垂直面) 40
point charge(点電荷) 79
point delta function(点状デルタ関数) 20
Poisson equation (ポアソンの式) 68
Poisson theorem (ポアソンの定理) 69
polarization (分極) 53
polarization charge(分極電荷) 53
polarization current (分極電流) 58
polarization vector (分極ベクトル) 53
potential (ポテンシャル) 7, 27
Poynting vector $(ポインティングベクトル)$ 106
practical unit(実用単位系) 189, 199
practical unit(実用単位) 184
principle of minimum action (最小作用の原理)
93, 222
principle of superposition (重ね合わせの原理) . 3
Pugh-Pugh (パフ・パフ) 163

∎ Q

quantity equation (量方程式) 18	5, 191
quasi particle(準粒子)	. 174
quasi-static (準静的)	. 124

\blacksquare R

raising (昇階) 147
rational (有理) 186, 188, 192
rationalizing constant (有理化定数) 190
retarded potential (遅延ポテンシャル) 110
reverse transform(逆変換) 142
Riemann integral(リーマン積分) 10
right screw relation(右ネジの関係) 5
rot (rotation)
rotation (回転) 21
rotation integral (回転積分) 21
rotation (rot) 22
rotor (回転子) 160

\blacksquare S

scalar field(スカラー場) 9
scalar potential $(X D \overline{)} - x \overline{)} \overline{)} \dots \overline{)} 7, 67$
scalar product(スカラー積) 3
self-inductance(自己インダクタンス) 89, 178
SI units 184
SI units (SI 単位系) 184
SI 単位系(SI units) 184
solenoid (ソレノイド) 5, 34, 82
static (静的) 48
stationary (停留) 216
stator(固定子) 160
Stokes inner product theorem of vector field ($\ll 2$
トル場のストークスの内積定理) 26
Stokes outer product theorem (ストークスの外積定
理) 28
Stokes outer product theorem of vector field (\checkmark
クトル場のストークスの外積定理) 28

Stokes theorem(ストークスの定理) 26
Stokes theorem of scalar field(スカラー場のストー
クスの定理) 26
strength of magnetic field(磁場強度) 59
sub-electromagnetic tensor (副電磁テンソル) 156
superconductor(超伝導体) 174
surface charge(面電荷) 79
surface current(面電流) 80
surface delta function(面状デルタ関数) 21
surface integral (面積分) 9
symmetrical (対称) 187, 192, 210
symmetrizing constant (対称化定数) 192

T

TEM 波(transverse electric magnetic wave)	133
tensor (テンソル)	147
testing charge(検電荷)	3
TE 波(transverse electric wave)	133
TM 波(transverse magnetic wave)	133
transform coefficient (変換係数)	143
transformer (変成器)	. 88
transverse electric magnetic wave (TEM 波)	133
transverse electric wave(TE 波)	133
transverse magnetic wave (TM 波)	133
Trouton-Noble $(\models \square - \models \succ \cdot \lor - \neg \mu)$	164

V

value equation (数值方程式)	185
vector field(ベクトル場)	9
vector potential (ベクトルポテンシャル) 7	7, 79
vector product (ベクトル積)	3
vortex filament (渦糸)	. 38

\blacksquare W

wave equation (波動方程式)	
wave equation of potentials	(ポテンシャルの波動方
程式)	76, 108, 152, 176
wave guide(導波管)	133
Weber (ヴェーバー)	197, 198

∎ あ

アインシュタイン(Einstein) 140
アインシュタイン規約(Einstein convention) . 143
アルキメデスの法則(Archimedes law) 12
アンペールの線積分法則(Ampere line integral law)
39
アンペールの法則(Ampere law) 28, 39
アンペールの法則の微分形(differential form of
Ampere law) 38, 49
アンペールの面積分法則(Ampere surface integral
law) 37, 48
アンペール力 (Ampere force) 190, 191
一般化運動量(generalized momentum) 223
一般化座標(generalized coordinate) 217
一般化力(generalized force) 218
インダクタ(inductor) 60
インダクタンス (inductance) 61, 177
ヴェーバー (Weber) 197. 198

渦糸 (vortex filament) 38
オイラーの微分方程式(Euler differential equation)
219

■ か

外積(outer product) 3
回転 (rotation) 21
回転子 (rotor) 160
回転積分 (rotation integral) 21
ガウス (Gauss)
ガウス単位系 (Gauss units) 184–198
ガウスの処積定理 (Gauss outer product theorem)
22 (Gauss outer product theorem)
20 式中了の空理(Course theorem) 15 17
ガリスの定理 (Gauss theorem) 15,17
カリスの伝則 (Gauss law) $\dots 30$
カワスの法則の做分形(differentail form of Gauss
law)
重ね合わせの原理 (principle of superposition) . 3
完全反対称テンソル(antisymmetric tensor) . 150
起電力(electro-motive force) 6
基本単位(base unit) 201
逆変換(reverse transform) 142
キャパシタ (capacitor) 56
キャパシタンス (capacitance) 56
境界条件(boundary condition) 124
共変テンソル (covariant tensor) 147
共変ベクトル (covariant vector) 146
キルドホフの電圧則 (Kirchhoff voltage law) 77
180
キルヒホフの雪流則 (Kirchhoff current law) 77
180
キルドホフのフラクソイド則 (Kirchhoff fluxoid law)
180
クーパー対 (Cooper pair) 174
クーロン型ポテンシャル (Coulomb type potential)
68. 79
クーロンゲージ (Coulomb gauge) 74
クーロンの注則 (Coulomb law) 4 14 30 33 187
クーロン場 (Coulomb field) 14 23
2 - 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
ターロンホアンシャル(Coulomb potential) 08 組入立て単位(domined unit)
祖の立て半回(derived unit)
シーネッカー)ルタ(Kronecker denta) 102 計量テンパル(mastria tangan)
計画アンアル (metric tensor)
ケージ个変性 (gauge invariance)
ケージ変換 (gauge transformation) 74
検電荷 (testing charge) 3
降階 (lowering) 147
光速(light velocity) 76
勾配 (gradient) 13, 28
勾配積分 (gradient integral) 13
コールラウシュ (Kohlrausch) 198
国際標準単位系(International Standard units)
184 199
101, 100
固定子(stator) 160
固定子(stator) 160 混合テンソル(mixed tensor) 147
固定子 (stator) 160 混合テンソル (mixed tensor) 147 コンデンサ (condensor) 56

■ さ

最小作用の原理(principle of minimum action)
93, 222
鎖交(cross-link) 40
作用 (action) 94, 222
作用反作用の法則(action-reaction law) 103
ジオルジ (Giorgi) 198
磁化 (magnetization) 57, 209
磁荷 (magnetic charge) 4, 33, 62
磁界 (magnetic field) 2
磁化テンソル (magnetization tensor) 155
磁化雷流 (magnetization current) 57
磁荷のクーロンの注則 (Coulomb law of magnetic
charge)
磁化ベクトル (magnetization vector) 57
磁位、アイル (magnetization vector)
磁向 C / μ (magnetic charge model)
磁気インタンタンス (Inagnetic-inductance) 178 磁気エネルギー (magnetic energy) 09
版
磁风感文华 (magnetic susceptibility)
磁风 (magnetic penetration depth) 1/6
磁気単位糸 (magnetic units) 197
磁気定数 (magnetic constant) 4, 198
磁気分極 (magnetic polarization) 209
磁気モーメント (magnetic moment) \ldots 45, 57
磁極 (magnetic pole) 2, 34
次元解析 (dimension analysis) 204
自己インダクタンス (self-inductance) 89, 178
磁石 (magnet) 2
磁性体 (magnetic materials) 57
自然単位系(natural units) 207
磁束 (magnetic flux) 34
磁束密度(magnetic flux density) 63
磁束量子(flux quantum) 175, 179
実用単位(practical unit) 184
実用単位系(practical unit) 189, 199
磁場(magnetic field) 2
磁場強度(strength of magnetic field) 59
磁場凍結(freezing of magnetic field) 52, 124
自由電荷(free charge) 54
自由電流(free current) 57
準静的 (quasi-static) 124
順変換(forward transform) 142
準粒子(quasi particle) 174
昇階 (raising) 147
磁流 (magnetic current) 62
指力線(line of force) 33
磁力線 (line of magnetic force)
数值方程式 (value equation) 185
スカラー積 (scalar product)
スカラー場 (scalar field)
スカラー場のガウスの定理 (Gauss theorem of scalar
field) 15
スカラー場のストークスの定理 (Stokes theorem of
scalar field)
スカラーポテンシャル (scalar potential) 7.67
ストークスの外積定理 (Stokes outer product
theorem)
ストークスの定理(Stokes theorem) 26

静的(static) 48
静電エネルギー(electro-static energy) 95
静電単位系(electrostatic units) 198
静電ポテンシャル(electro-static potential) 67
整流子(commutator) 160
線形応答(linear response) 55
線状デルタ関数(line delta function) 20
全電荷(all charge) 54
線電荷(line charge) 79
全電流(all current) 58
線電流(line current) 80
相互インダクタンス(mutual-inductance) 89, 178
束縛(constraint) 215
束縛電荷(bounded charge) 55
束縛電流(bounded current) 58
束縛力(constraining force) 215
ソレノイド (solenoid) 5, 34, 82

■ た

対称 (symmetrical) 187, 192, 210
対称化定数 (symmetrizing constant) 192
ダランベールの仮想変位の原理(d'Alenbert principle
of virtual displacement) 216
遅延ポテンシャル (retarded potential) 110
力垂直面 (perpendicular surface to force) 40
超伝導体(superconductor) 174
ディラックのデルタ関数(Dirac δ function) 19
停留(stationary) 216
デルタ関数 (delta function) 19
電荷 (electric charge) 2
電界(electric field) 2
電荷密度(charge density) 31
電気エネルギー (electric energy) 95
電気感受率(electric susceptibility) 55
電気定数(electric constant) 4, 30, 197
電気モーメント (electric moment) 53
電気力線(line of electric force) 33
電磁界(electro-magnetic field) 2
電磁気学(electro-magnetism) 2
電磁石 (eletromagnet) 160
電磁単位系(electromagnetic units) 197
電磁テンソル (electromagnetic tensor) 149
電磁場(electro-magnetic field) 2
電磁場の運動量(momentum of electro-magnetic
field) $\dots \dots \dots$
電磁場のエネルギー(energy of electo-magnetic
field) 106
点状デルタ関数(point delta function) 20
電束密度(electric flux density) 55
テンソル (tensor) 147
点電荷(point charge) 79
電場(electric field) 2
電流(current) 2
電流素片(current element) 33, 41
電流密度(current density) 79
電流連続の法則(current continuity law) 6, 38,
48, 123, 176, 193
ド・ブロイの関係(De Broglie relation) 86

透磁率(permeability) 59
導体 (conductor) 51
動的(dynamic) 48
導電率 (conductivity) 51
導波管(wave guide) 133
等ポテンシャル面 (equi-potential surface) 40
トロートン・ノーブル (Trouton-Noble) 164

■ な

内積 (inner produc	et) 3	
ナブラ(▽)	13	

■ は

场 (field)
発散 (divergence) 15
発散積分 (divergence integral) 16
波動方程式 (wave equation)
パフ・パフ (Pugh-Pugh) 163
反変逆変換係数(contravariant reverse transform
coefficient) 144
反変順変換係数(contravariant forward transform
coefficient) 143
反変テンソル (contravariant tensor) 147
反変ベクトル(contravariant vector) 144
ビオ・サバールの法則(Biot-Savart law) 5, 41, 47,
91
微小電流ループ(micro current loop) 33, 84
非対称 (asymmetrical) 187
非有理(irrational) 186, 192
ファインマン (Feynman) 162
ファラデーゲージ(Faraday gauge) 74
ファラデーの法則(Faraday law) 6, 49, 87, 191
ファラデーの法則の微分形(differential form of
Faraday law) 49
副電磁テンソル (sub-electromagnetic tensor) 156
フラクソイド (fluxoid) 179, 180
分極 (polarization) 53
分極電荷 (polarization charge) 53
分極電流 (polarization current)
分極ベクトル (polarization vector) 53
ベクトル積 (vector product)
ベクトル場 (vector field) 9
ベクトル場のストークスの外積定理 (Stokes outer
product theorem of vector field) 28
ベクトル場のガウスの外積定理 (Gauss outer
product theorem of vector field) 23
ベクトル場のガウスの内積定理 (Gauss inner
product theorem of vector field) 17
ベクトル場のストークスの内積定理 (Stokes inner
product theorem of vector field) 26
$\sqrt{2}$ b $\sqrt{2}$ t $\sqrt{2}$ b \sqrt
ベノイババンジン (We con potential) 1, 19
ベビリイト (Heaviside)
NUT
・NC リイトローレンノ 単位示(Heaviside-Lorentz
units/ 184, 198
(Hertz)
$\gamma \mu \Delta \pi \mu \forall$ (Helmholtz) 198
ヘルムホルツの定埋(Helmholtz theorem) 69

変位電流(displacement current) 6, 48, 191
変換係数(transform coefficient) 143
変成器(transformer) 88
ポアソンの式 (Poisson equation) 68
ポアソンの定理(Poisson theorem) 69
ポインティングベクトル (Poynting vector) 106
棒磁石 (bar magnet) 4
ボーズ凝集 (Bose condensation) 174
ボーズ粒子(boson) 174
ホール効果(Hall effect) 51
保存場(conservative field) 27
保存力(conservative force) 27
ポテンシャル (potential)
ポテンシャルの波動方程式(wave equation of
potentials) 76, 108, 152, 176

∎ ま

マクスウェル (Maxwell)	3, 198
マクスウェル応力テンソル(Maxwell stress ten	sor)
102	
マクスウェル方程式(Maxwell equations)	6, 49
右ネジの関係(right screw relation)	5
面状デルタ関数(surface delta function)	21
面積分(surface integral)	9
面電荷(surface charge)	79
面電流(surface current)	80

■ や

誘電緩和(dielectric relaxation) 52, 123
誘電体(dielectric material) 53
誘電率(permittivity) 55
誘導起電力(induced electromotive force) 88, 154
誘導電荷(induced charge) 125
誘導電流(induced current) 127
有理(rational) 186, 188, 192
有理化定数(rationalizing constant) 190
四元運動量(four-vector momentum) 145
四元加速度(four-vector acceleration) 145
四元速度(four-vector velocity) 145
四元電流(four-vector current) 152
四元ベクトル(four-vector) 142
四元ポテンシャル(four-vector potentail) 152
四元力(four-vector force) 145

■ ら

ラグランジアン(Lagrangian)	219
ラグランジュ・ダランベールの仮想変位の原理	
(Lagrange d'Alenbert principle of virt	ual
displacement)	217
ラグランジュの運動方程式(Lagrange equation of	of
motion)	219
ラグランジュの未定係数法(Lagrange method of	ſ
undetermined multiplier)	220
リーマン積分(Riemann integral)	. 10
リエナール・ウィーヘルトポテンシャル	
(Lienard-Wiechert potential)	154
力学インダクタンス(kinetic-inductance)	178
量方程式(quantity equation) 185,	191

ローレンスゲージ(Lorenz gauge)	8, 75, 176
ローレンス条件(Lorenz condition)	
ローレンツ (Lorentz)	141
ローレンツ変換(Lorentz transform)	142
ローレンツ力 (Lorentz force) 3, 50, 91	, 101, 194,
219	